首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this work was to study the effect of cation-substitution on the reducibility of the perovskite, as well as the effect on the catalytic activity for the CH4 oxidation reaction. Six perovskites (LaCoO3, LaMnO3, La1−xSrxMnO3 (x = 0.2, 0.4), and La1−xCexMnO3 (x = 0.05, 0.1)) were synthesized by reactive grinding. The reducibility of the perovskite was studied by means of the oxygen storage capacity (OSC) measurement. OSC was performed at different temperatures on LaCoO3 and LaMnO3, in order to elucidate the different mechanisms of reduction involved at each temperature. The substituted samples showed that reduction profile is modified at high-substitution degrees; however, no differences were observed on the OSC values (amount of most active oxygen, calculated after one pulse of CO) between the pure lanthanum sample and the substituted ones.

Tested in the CH4 oxidation reaction, the LaCoO3 sample was found to present a little higher activity than LaMnO3, even if the cobalt-based sample presented a smaller specific surface area. Moreover, all the substituted samples presented very slightly higher activities than the pure LaMnO3 solid. Because of the supposed redox oxidation mechanism (Mars-Van-Krevelen), this agrees well with the OSC results obtained for the reducibility of the manganese on these samples, by which it was observed that substitution does not clearly affect the immediate reduction of the manganese.  相似文献   


2.
LaxSr2−xMnO4 (0 ≤ x ≤ 0.8) oxides were synthesized and single-phase K2NiF4-type oxides were obtained in the range of 0.1 ≤ x < 0.5. The catalytic activity of LaxSr2−xMnO4 for NO–CO reaction increased with increasing x in the range of solubility limit of La. La0.5Sr1.5MnO4 showed the highest activity among LaxSr2−xMnO4 prepared in this study, but its activity was inferior to perovskite-type La0.5Sr0.5MnO3. Among the Pd-loaded catalysts, however, Pd/La0.8Sr1.2MnO4 showed the higher activity and the selectivity to N2 than Pd/La0.5Sr0.5MnO3 and Pd/γ-Al2O3. The excellent catalytic performance of Pd/La0.2Sr1.2MnO4 could be ascribable to the formation of SrPd3O4 which was detected by XRD in the catalyst but not in the other two catalysts.  相似文献   

3.
Catalytic combustion of methane has been investigated over AMnO3 (A = La, Nd, Sm) and Sm1−xSrxMnO3 (x = 0.1, 0.3, 0.5) perovskites prepared by citrate method. The catalysts were characterized by chemical analysis, XRD and TPR techniques. Catalytic activity measurements were carried out with a fixed bed reactor at T = 623–1023 K, space velocity = 40 000 N cm3 g−1 h−1, CH4 concentration = 0.4% v/v, O2 concentration = 10% v/v.

Specific surface areas of perovskites were in the range 13–20 m2 g−1. XRD analysis showed that LaMnO3, NdMnO3, SmMnO3 and Sm1−xSrxMnO3 (x = 0.1) are single phase perovskite type oxides. Traces of Sm2O3 besides the perovskite phase were detected in the Sm1−xSrxMnO3 catalysts for x = 0.3, 0.5. Chemical analysis gave evidence of the presence of a significant fraction of Mn(IV) in AMnO3. The fraction of Mn(IV) in the Sm1−xSrxMnO3 samples increased with x. TPR measurements on AMnO3 showed that the perovskites were reduced in two steps at low and high temperature, related to Mn(IV) → Mn(III) and Mn(III) → Mn(II) reductions, respectively. The onset temperatures were in the order LaMnO3 > NdMnO3 > SmMnO3. In Sm1−xSrxMnO3 the Sr substitution for Sm caused the formation of Mn(IV) easily reducible to Mn(II) even at low temperature. Catalytic activity tests showed that all samples gave methane complete conversion with 100% selectivity to CO2 below 1023 K. The activation energies of the AMnO3 perovskites varied in the same order as the onset temperatures in TPR experiments suggesting that the catalytic activity is affected by the reducibility of manganese. Sr substitution for Sm in SmMnO3 perovskites resulted in a reduction of activity with respect to the unsubstituted perovskite. This behaviour was related to the reduction of Mn(IV) to Mn(II), occurring under reaction conditions, hindering the redox mechanism.  相似文献   


4.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

5.
Nanometer perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) have been prepared using the citric acid complexing-hydrothermal-coupled method and characterized by means of techniques, such as X-ray diffraction (XRD), BET, high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and temperature-programmed reduction (TPR). The catalytic performance of these nanoperovskites in the combustion of ethylacetate (EA) has also been evaluated. The XRD results indicate that all the samples possessed single-phase rhombohedral crystal structures. The surface areas of these nanomaterials ranged from 20 to 33 m2 g−1, the achievement of such high surface areas are due to the uniform morphology with the typical particle size of 40–80 nm (as can be clearly seen in their HRSEM images) that were derived with the citric acid complexing-hydrothermally coupled strategy. The XPS results demonstrate the presence of Mn4+ and Mn3+ in La1−xSrxMnO3−δ and Co3+ and Co2+ in La1−xSrxCoO3−δ, Sr substitution induced the rises in Mn4+ and Co3+ concentrations; adsorbed oxygen species (O, O2, or O22−) were detected on the catalyst surfaces. The O2-TPD profiles indicate that Sr doping increased desorption of the adsorbed oxygen and lattice oxygen species at low temperatures. The H2-TPR results reveal that the nanoperovskite catalysts could be reduced at much lower temperatures (<240 °C) after Sr doping. It is observed that under the conditions of EA concentration = 1000 ppm, EA/oxygen molar ratio = 1/400, and space velocity = 20,000 h−1, the catalytic activity (as reflected by the temperature (T100%) for EA complete conversion) increased in the order of LaCoO2.91 (T100% = 230 °C) ≈ LaMnO3.12 (T100% = 235 °C) < La0.6Sr0.4MnO3.02 (T100% = 190 °C) < La0.6Sr0.4CoO2.78 (T100% = 175 °C); furthermore, there were no formation of partially oxidized by-products over these catalysts. Based on the above results, we conclude that the excellent catalytic performance is associated with the high surface areas, good redox properties (derived from higher Mn4+/Mn3+ and Co3+/Co2+ ratios), and rich lattice defects of the nanostructured La1−xSrxMO3−δ materials.  相似文献   

6.
R. Karita  H. Kusaba  K. Sasaki  Y. Teraoka   《Catalysis Today》2007,126(3-4):471-475
K2NiF4-type La0.2Sr1.8MnO4 was synthesized by nitrate (ND) and nitrate/acetate (NAD) decomposition methods as well as solid-state reaction. Single-phase oxide was obtained at 550 °C by the ND method just after the decomposition of Sr(NO3)2 and at 1000 °C by the NAD method after the decomposition of SrCO3. The K2NiF4-type oxide was hardly formed by the solid-state reaction. In the La–Sr–Mn system, an intermediate compound of SrCO3, if present or formed during the decomposition process, interfered with the low-temperature formation of the K2NiF4-type oxide because of its high decomposition temperature about 1000 °C. The ND method used only metal nitrates and no starting materials with carbon source, so that the low-temperature synthesis of the K2NiF4-type oxide was realized without forming obstinate intermediate compound of SrCO3. The low-temperature synthesis was possible for LaxSr2−xMnO4 with the substitution of La (0 < x < 0.5) and not for La0.2A1.8MnO4 (A = Ca and Ba). The effect of A-site cations on the K2NiF4-phase formation was discussed from the geometric aspect.  相似文献   

7.
Mixed oxides of the general formula La0.5SrxCeyFeOz were prepared by using the nitrate method and characterized by XRD and Mössbauer techniques. The crystal phases detected were perovskites LaFeO3 and SrFeO3−x and oxides -Fe2O3 and CeO2 depending on x and y values. The low surface area ceramic materials have been tested for the NO+CO and NO+CH4+O2 (“lean-NOx”) reactions in the temperature range 250–550°C. A noticeable enhancement in NO conversion was achieved by the substitution of La3+ cation at A-site with divalent Sr+2 and tetravalent Ce+4 cations. Comparison of the activity of the present and other perovskite-type materials has pointed out that the ability of the La0.5SrxCeyFeOz materials to reduce NO by CO or by CH4 under “lean-NOx” conditions is very satisfying. In particular, for the NO+CO reaction estimation of turnover frequencies (TOFs, s−1) at 300°C (based on NO chemisorption) revealed values comparable to Rh/-Al2O3 catalyst. This is an important result considering the current tendency for replacing the very active but expensive Rh and Pt metals. It was found that there is a direct correlation between the percentage of crystal phases containing iron in La0.5SrxCeyFeOz solids and their catalytic activity. O2 TPD (temperature-programmed desorption) and NO TPD studies confirmed that the catalytic activity for both tested reactions is related to the defect positions in the lattice of the catalysts (e.g., oxygen vacancies, cationic defects). Additionally, a remarkable oscillatory behavior during O2 TPD studies was observed for the La0.5Sr0.2Ce0.3FeOz and La0.5Sr0.5FeOz solids.  相似文献   

8.
Direct nitric oxide decomposition over perovskites is fairly slow and complex, its mechanism changing dramatically with temperature. Previous kinetic study for three representative compositions (La0.87Sr0.13Mn0.2Ni0.8O3−δ, La0.66Sr0.34Ni0.3Co0.7O3−δ and La0.8Sr0.2Cu0.15Fe0.85O3−δ) has shown that depending on the temperature range, the inhibition effect of oxygen either increases or decreases with temperature. This paper deals with the effect of CO2, H2O and CH4 on the nitric oxide decomposition over the same perovskites studied at a steady-state in a plug-flow reactor with 1 g catalyst and total flowrates of 50 or 100 ml/min of 2 or 5% NO. The effect of carbon dioxide (0.5–10%) was evaluated between 873 and 923 K, whereas that of H2O vapor (1.6 or 2.5%) from 723 to 923 K. Both CO2 and H2O inhibit the NO decomposition, but inhibition by CO2 is considerably stronger. For all three catalysts, these effects increase with temperature. Kinetic parameters for the inhibiting effects of CO2 and H2O over the three perovskites were determined. Addition of methane to the feed (NO/CH4=4) increases conversion of NO to N2 about two to four times, depending on the initial NO concentration and on temperature. This, however, is still much too low for practical applications. Furthermore, the rates of methane oxidation by nitric oxide over perovskites are substantially slower than those of methane oxidation by oxygen. Thus, perovskites do not seem to be suitable for catalytic selective NO reduction with methane.  相似文献   

9.
Electrical resistivity and Seebeck (S) measurements were performed on (La1−xSrx)MnO3 (0.02x0.50) and (La1−xSrx)CoO3 (0x0.15) in air up to 1073 K. (La1−xSrx)MnO3 (x0.35) showed a metal-to-semiconductor transition; the transition temperature almost linearly increased from 250 to 390 K with increasing Sr content. The semiconductor phase above the transition temperature showed negative values of S. (La1−xSrx)CoO3 (0x0.10) showed a semiconductor-to-metal transition at 500 K. Dominant carriers were holes for the samples of x0.02 above room temperature. LaCoO3 showed large negative values of S below ca. 400 K, indicative of the electron conduction in the semiconductor phase.  相似文献   

10.
Structural, redox and catalytic deep oxidation properties of LaAl1−xMnxO3 (x=0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) solid solutions prepared by the citrate method and calcined at 1073 K were investigated. XRD analysis showed that all the LaAl1−xMnxO3 samples are single phase perovskite-type solid solutions. Particle sizes and surface areas (SA) are in the 280–1180 Å and 4–33 m2 g−1 ranges, respectively. Redox properties and the content of Mn4+ were derived from temperature programmed reduction (TPR) with H2. Two reduction steps are observed by TPR for pure LaMnO3, the first attributed to the reduction of Mn4+ to Mn3+ and the second due to complete reduction of Mn3+ to Mn2+. The presence of Al in the LaAl1−xMnxO3 solid solutions produces a strong promoting effect on the Mn4+→Mn3+ reducibility and inhibits the further reduction to Mn2+. Both for methane combustion and CO oxidation all Mn-containing perovskites are much more active than LaAlO3, so pointing to the essential role of the transition metal ion in developing highly active catalysts. Partial dilution with Al appears to enhance the specific activity of Mn sites for methane combustion.  相似文献   

11.
Perovskites of different La1−xSrxAl1−yyFeyMgyO3−δ compositions (x=0, 0.1, 0.15, 0.2 and y=0.1, 0.3, 0.5, 0.8) were prepared from a reactive precursor slurry of hydrated oxides. Each sample was aged between 16 and 26 h up to 1473 K. Activity in methane combustion (1%/air) was determined in a plug-flow reactor, with 1 g catalyst and 24 l/h flowrate. Gradual decrease in activity due to thermal aging was observed, the degree of activity loss being composition dependent. Nevertheless, activity of samples aged at 1370 K was nearly independent of composition. The best thermal stability showed LaAl0.65Fe0.15Mg0.2O3 perovskite. None of the magnesium substituted perovskites performed better than a La0.85Sr0.15Al0.87Fe0.13O3 reference sample.  相似文献   

12.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

13.
The sintering properties of La1−xSrxFeO3−δ (x = 0.1, 0.25) mixed conductors have been investigated with particular emphasis on the effect of secondary phases due to cation non-stoichiometry (±5 mol% La excess and deficiency). Secondary phases, located at grain boundaries in cation non-stoichiometric materials, increased the sintering temperature compared to single-phase materials. Extensive swelling in final stage of sintering was observed in all materials, which resulted in micro-porous materials. The swelling was most pronounced in the phase pure and two-phase materials due to La-deficiency, while refractory secondary phases in La-excess materials inhibited both sintering, grain growth and swelling. In La-deficient materials, formation of molten secondary phases resulted in rapid swelling due to viscous flow. The present findings demonstrated the importance of controlling sintering temperature and time, as well as careful control of the cation stoichiometry of La1−xSrxFeO3−δ in order to achieve fully dense and homogenous La1−xSrxFeO3−δ ceramics.  相似文献   

14.
Perovskite type La1 − xSrxMnO3 (x = 0–0.5) oxides were prepared by the amorphous citrate process, characterised by X-ray diffraction, oxygen desorption, temperature-programmed reduction, infrared and X-ray photoelectron spectroscopic techniques, and tested for methane combustion within the 473–1073 K temperature range. Since catalyst activity was found to depend strongly on BET areas and to a lesser extent, on the degree of substitution (x), intrinsic activities were computed for La1 − xSrxMnO3 catalyst series. Among the compositions investigated, the degree of substitution x = 0.2 showed the highest intrinsic activity within the temperatures explored. Characterisation techniques made possible to correlate catalytic performance with the structural characteristics of the oxides. The stability of Mn4+ is probably the most important parameter, but excess of oxygen and atomic surface composition should also be taken into account.  相似文献   

15.
Performances of BaTi1 − xNixO3 perovskites, prepared using sol–gel method, as catalysts for partial oxidation of methane to syngas have been studied. The catalysts were characterized by XRD, BET and TEM. The experimental studies showed the calcination temperature and Ni content exhibited a significant influence on catalytic activity. Among catalysts tested, the catalyst BaTi0.8Ni0.2O3 exhibited the best activity and excellent stability.  相似文献   

16.
La1−xSrxMnO3 (x=0, 0.1, 0.3, 0.5, 0.7) perovskite-type oxides (PTOs) were prepared by coprecipitation under various calcination temperature, and their performances for the NO reduction were evaluated under a simulated exhaust gas mixture. The X-ray diffraction (XRD) and thermogravimetric analysis were carried out to find the formation process of the perovskite. The NO reduction rate under different reaction temperature, the concentration of oxygen and the presence of hydrocarbon were observed by the input/output analysis. In the presence of 10% excess oxygen, the catalyst La0.7Sr0.3MnO3 calcined at 900 °C showed a NO reduction rate of 61% at 380 °C. The study of the reaction curves showed that C3H8 could act as the reducer for the NO reduction below 400 °C. The NO reduction is highly affected by increasing the O2 concentration from 0.5 to 10%, especially at high temperatures when oxygen becomes more competitive than NO on the oxidation of C3H8, leading to a decrease of the NO reduction from 100% to zero at 560 °C.  相似文献   

17.
This paper presents an investigation on the NO oxidation properties of perovskite oxides. La1−xCexCoO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4) perovskite-type oxides were synthesized through a citrate method and characterized by XRD, BET and XPS. The catalytic activities were enhanced significantly with Ce substitution, and achieved the best when x was 0.2, but decreased at higher x values. The performed characterizations reveal that the adsorbed oxygen on the surface plays an important role in the oxidation of NO into NO2. The surface compounds after the co-adsorption of NO and O2 at room temperature, were investigated by DRIFTS and TPD experiments. Three species: the bridging nitrate, the hyponitrites and the monodentate nitrate, were formed on the surface. The order of thermal stabilities was as follows: monodentate > hyponitrite > bridging. Among them, only the monodentate nitrate which decomposed at above 300 °C, would desorb NO2 into the gas phase. When Ce was added, the temperature of monodentate nitrate desorption became low and the adsorption of the other two species decreased. This might be related to the oxidation state of Co on the surface. Analysis by synthesizing the characterization results and catalytic activity data shows that large amounts of adsorbed oxygen, small amount of inactive compounds on the surface and low NO2 desorption temperature are favorable for the oxidation of NO.  相似文献   

18.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

19.
Effect of substitution of CuO and WO3 on the microwave dielectric properties of BiNbO4 ceramics and the co-firing between ceramics and copper electrode were investigated. The (Bi1−xCux)(Nb1−xWx)O4 (x = 0.005, 0.01, 0.015, 0.02) composition can be densified between 900 and 990 °C. The microwave dielectric constants lie between 36 and 45 and the pores in ceramics were found to be the main influence. The Q values changes between 1400 and 2900 with different x values and sintering temperatures while Qf values lie between 6000 and 16,000 GHz. The microwave dielectric losses, mainly affected by the grain size, pores, and the secondary phase, are discussed. The (Bi1−xCux)(Nb1−xWx)O4 ceramics and copper electrode was co-fired under N2 atmosphere at 850 °C and the EDS analysis showed no reaction between the dielectrics and copper electrodes. This result presented the (Bi1−xCux)(Nb1−xWx)O4 dielectric materials to be good candidates for LTCC applications with copper electrode.  相似文献   

20.
Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure were prepared by using a citric acid sol–gel method, and their catalytic performance for complete oxidation of methanol and ethanol was evaluated and compared with that of the γ-Al2O3-supported catalysts, Ag/γ-Al2O3, Pt/γ-Al2O3, and Pd/γ-Al2O3. The results showed that the Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure displayed the activity significantly higher than that of the supported precious metal catalysts, 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 in the temperature range of 370–573 K. Over a 6%Ag/20%La0.6Sr0.4MnO3/γ-Al2O3 catalyst, the T95 temperature for methanol oxidation can be as low as 413 K. Even at such low reaction temperature, there were little HCHO and CO detected in the reaction exit-gas. However, for the 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 catalysts, the HCHO content in the reaction exit-gas reached 200 and 630 ppm at their T95 temperatures. Over a 6%Ag/La0.6Sr0.4MnO3 catalyst, the T95 temperature for ethanol oxidation can be as low as 453 K, with a corresponding content of CH3CHO in the exit-gas at 782 ppm; when ethanol oxidation is performed at 493 K, the content of acetaldehyde in the exit-gas can be below 1 ppm. Characterization of the catalysts by X-ray diffraction (XRD), TEM, XPS, laser Raman spectra (LRS), hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-programmed desorption (O2-TPD) methods revealed that both the surface and the bulk phase of the perovskite La0.6Sr0.4MnO3 played important roles in the catalytic oxidation of the alcohols, and that γ-Al2O3 as the bottom carrier could be beneficial in creating a large surface area of catalyst. Moreover, a small amount of Ag+ doped onto the surface of La0.6Sr0.4MnO3 was able to partially occupy the positions of La3+ and Sr2+ due to their similar ionic radii, and thus, became stabilized by the perovskite lattice, which would be in favor of preventing the aggregation of the Ag species on the surface and enhancing the stability of the catalyst. On the other hand, modification of the Ag+ to the surface of La0.6Sr0.4MnO3 resulted in an increase in relative content of the surface O22−/O species highly reactive toward the alcohols and aldehydes as well as CO. Besides, solution of low-valence metal oxides SrO and Ag2O with proper amounts in the lattice of the trivalent metal perovskite-type oxide LaMnO3 would also lead to an increase in the content of the reducible Mnn+ and the formation of anionic vacancies, which would be favorable for the adsorption-activation of oxygen on the functioning catalyst and the transport of the lattice and surface oxygen species. All these factors would contribute to the pronounced improvement of the catalyst performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号