首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present study examines the flow characteristics of open microchannels with sharp turns by experimental and numerical methods. For the open channel system in microscale, the flow is mainly driven by surface tension at atmospheric pressure. The open channels are of various aspect ratios of depth-to-width, ranging from 0.75 to 3, and of turning angles from 45° to 135°. It is found that the turning angle and the aspect ratio of depth-to-width play major roles in the velocity of liquid front advancing, the meniscus of liquid–gas interface shape, and head loss of flow due to turning. Besides, the radius of curvature of the liquid front is reduced as the liquid front travels downstream and over the turning elbow. The loss coefficient remains the same for turning angles less than 75°, whereas it is increased further and is even more pronounced for turning angles larger than 105°. Numerical predications based on conservation laws agree with the experimental observations, and the flow characteristics are well described for open channel in microscale, as the aspect ratio is greater than or near to 1.5.  相似文献   

2.
The necessity of microscale mixing processes has been tremendously increasing in most of the microsize chemical and biochemical devices during recent years, particularly in the design of lab-on-a-chip and micrototal analysis systems. Different approaches were implemented in the available micromixers in the literature for improving the mixing performance. Due to the absence of any external source, mixing by utilizing passive mixing techniques is more economical. In curvilinear microchannels, which offer effective passive mixing, chaotic advection results in continuous radial perforation of inter-diffusion layer between the fluid streams due to the transverse secondary flows. In this study, the effects of Dean vortices and secondary flows were investigated in asymmetrical polydimethylsiloxane curvilinear rectangular microchannels, which were fabricated by one-step lithography process and had repeated S-shape patterns with a curvature of 280° along the channel. Moreover, the effect of asymmetry was assessed by comparing the mixing results with symmetrical microchannels. Mixing performance was analyzed by using NaOH and phenolphthalein solutions as mixing fluids, which entered from the channel inlets. According to the results, the significant effects of stretching and contracting motion of Dean vortices revealed themselves above a certain Dean number value, thereby making the asymmetrical microchannel outperform the symmetrical channel in the mixing performance. Below this threshold, the symmetrical microchannel was observed to be superior to the asymmetrical microchannel.  相似文献   

3.
This paper presents a generalization of the hydrodynamic focusing technique to three-dimensions. Three-dimensional (3-D) hydrodynamic focusing offers the advantages of precision positioning of molecules in both vertical and lateral dimensions and minimizing the interaction of the sample fluid with the surfaces of the channel walls. In an ideal approach, 3-D hydrodynamic focusing could be achieved by completely surrounding the sample flow by a cylindrical sheath flow that constrains the sample flow to the center of the channel in both the lateral and the vertical dimensions. We present here design and simulation, 3-D fabrication, and experimental results from a piecewise approximation to such a cylindrical flow. Two-dimensional (2-D) and 3-D hydrodynamic focusing chips were fabricated using micromolding methods with polydimethylsiloxane (PDMS). Three-dimensional hydrodynamic focusing chips were fabricated using the "membrane sandwich" method. Laser scanning confocal microscopy was used to study the hydrodynamic focusing experiments performed in the 2-D and 3-D chips with Rhodamine 6G solution as the sample fluid and water as the sheath fluid.  相似文献   

4.
The paper is concerned with the experimental and numerical investigations of the vortex formation and flow focusing inside a cross-shaped microchannel domain. The local hydrodynamics in the junction area, upstream of the focusing region, is analyzed with the aim to characterize the onset and the evolution of the vortical structures, in correlation with the operating parameters. The numerical simulations based on a finite-volume approach are validated by direct flow visualizations using epifluorescence and confocal microscopy. The main result of the study is a flow pattern map, providing comprehensive information on the flow dynamics inside the microchannel junction as a function of the input flow rates and the corresponding Reynolds numbers. The flow pattern map identifies the limits of the flow focusing regime and the critical values of the parameters at which the vortical structures are formed. Beyond the breakdown of the classical flow focusing scenario with one focused output stream, flow patterns with two and four output streams are identified.  相似文献   

5.
We present herein microfluidic systems to continuously focus the positions of flowing particles onto the center of a microchannel, which is indispensable to various applications for manipulating particles or cells such as flow cytometry and particle-based bioassay. A scheme called ‘hydrodynamic filtration’ is employed to repeatedly split fluid flows from a main stream, while remaining particles in the main stream. By re-injecting the split flows into the main channel, these flows work as sheath flows, focusing the positions of the particles onto the center of the microchannel without the help of sheath flows or complicated devices generating physical forces. In this study, we proposed two schemes, and compared the focusing efficiencies between the two schemes using particles 5.0 μm in diameter. Also, we confirmed that the flow speed did not affect the focusing efficiency, demonstrating the versatility and applicability of the presented systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Focusing particles into a tight stream is usually a necessary step prior to counting, detecting and sorting them. Meanwhile, particle spacing control in microfluidic devices could also be applied in the field of accurate cell detection, material synthesis and chemical reaction. To achieve simultaneous particle focusing and spacing control, a novel microchannel composed by Dean and sheath flow section was proposed and fabricated according to the elaborated design principle with its manipulating performance in situ visualized. Using microspheres with a few microns as a template, the trajectory of the particles was discovered to follow lateral migration and reach certain equilibrium positions at the end of the designed Dean section. After being focused, the streamline was further concentrated and centralized with a controllable interparticle distance in sheath flow section. For sheath flow section, the angle between symmetrical tributaries and the mainstream channel and abrupt constriction/expansion structure of mainstream channel as important channel geometric features were investigated to minimize the focusing streamline width and optimize spacing control. An modified analytical model for sheath flow with different tributary angles was derived and proved to well describe the microsphere spacing control process.  相似文献   

7.
Focusing methods based on fluid inertia have been demonstrated to be able to concentrate particles with a high precision and predictability offering great potential for practical application as manipulation of bodily fluids as blood for clinical diagnostics. However, to perform focusing to one single position at the center location of a channel with high focusing quality on the one hand and low pressure losses and shear stresses on the other hand still is a challenge in microchannel design. Three different stepped microchannels are analyzed via bright-field microscopy to investigate the impact of various geometric parameters on the focusing behavior of spherical particles. Reynolds numbers within a range of \( 8 \le Re \le 75\) are measured to evaluate the impact of flow conditions on the focusing characteristics. The microchannels show the ability to focus particles to a single stream with a maximum focusing efficiency of 97.1\(\%\) and purity of 99.1\(\%\). The focusing strongly depends on the channel geometry, that is, step length, step height, and settling length. A semiempirical model is developed to predict force-induced focusing ability at maximum shear stresses that are reduced significantly compared to previous systems. This model is demonstrated to be in very good agreement with experimental results and therefore can be utilized for future device design. Finally, guidelines for the design of stepped single-stream focusing devices at low pressure losses and low maximum shear stresses are derived based on experimental, numerical, and semiempirical data.  相似文献   

8.
9.
The effects of rib-patterned surfaces and surface wettability on liquid flow in microchannels were experimentally investigated in this study. Microchannels were fabricated on single-crystal silicon wafers by photolithographic and wet-etching techniques. Rib structures were patterned in the silicon microchannel, and the surface was chemically treated by trichlorosilane to create hydrophobic condition. Experiments with water as the working fluid were performed with these microchannels over a wide range of Reynolds numbers between 110 and 1914. The results for the rib-patterned microchannels showed that the friction factor with the hydraulic diameter based on the rib-to-upper-wall height was lower than that predicted from incompressible theory with the same height. The friction factor-Reynolds number products for the hydrophobic condition increased as Reynolds number increased in the laminar flow regime. The experimental results were also compared with the predictive expressions from the literature, and it was found that the experimental data for the small rib/cavity geometry was in good agreement with those in the literature.  相似文献   

10.
Passengers' comfort experience during flights is important in choosing their flights. The focus of this study is passengers’ perceived comfort in different climbing angles during ascent. Twenty-six participants were invited to experience three inclination angles including 3°, 14° and 18° in a Boeing 737 cabin. The angle of 3° was used to simulate cruising stage and the other two were used to simulate different climbing angles. Participants experienced each setting for 20 min where the perceived comfort, their heart rate variability(HRV), and their body contact pressure values on the backrest and seat pan were recorded with questionnaires, HRV bands and pressure mats respectively. The results indicate a preference of 14° inclination angle resembling the cruising angle (3°) and having the slowest moving speed of the center of pressure (COP) on both the backrest and seat pan.  相似文献   

11.
Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of channel and its impacts on not only the shear field but also the wall-effect lift force near the wall region. In this study, particle focusing dynamics inside trapezoidal straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-lateral movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio, channel aspect ratio, and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Remarkably, an almost complete transition of major focusing from the longer side wall to the shorter side wall was found for large-sized particles of clogging ratio K ~ 0.9 (K = a/Hmin) when Re increased noticeably to ~ 650. Finally, based on our findings, a trapezoidal straight channel along with a bifurcation was designed and applied for continuous filtration of a broad range of particle size (0.3 < K < 1) exiting through the longer wall outlet with ~ 99% efficiency (Re < 100).  相似文献   

12.
This paper presents numerical results pertaining to the effects of interface curvature on the effective slip behavior of Poiseuille flow through microchannels and microtubes containing superhydrophobic surfaces with transverse ribs and grooves. The effects of interface curvature are systematically investigated for different normalized channel heights or tube diameters, shear-free fractions, and flow Reynolds numbers. The numerical results show that in the low Reynolds number Stokes flow regime, when the channel height or tube diameter (normalized using the groove–rib spacing) is sufficiently large, the critical interface protrusion angle at which the effective slip length becomes zero is θ c ≈ 62°–65°, which is independent of the shear-free fraction, flow geometry (channel and tube), and flow driving mechanism. As the normalized channel height or tube diameter is reduced, for a given shear-free fraction, the critical interface protrusion angle θ c decreases. As inertial effects become increasingly dominant corresponding to an increase in Reynolds number, the effective slip length decreases, with the tube flow exhibiting a more pronounced reduction than the channel flow. In addition, for the same corresponding values of shear-free fraction, normalized groove–rib spacing, and interface protrusion angle, longitudinal grooves are found to be consistently superior to transverse grooves in terms of effective slip performance.  相似文献   

13.
Pressure-driven gas and liquid flows through microchannels with cavities have been studied using both experimental measurements and numerical computations. Several microchannels with cavities varying in shape, number and dimensions have been fabricated. One set of microdevices, integrated with sensors on a silicon wafer, is used for flow rate and pressure distribution measurements in gas flows. Another set of microdevices, fabricated using glass-to-silicon wafer bonding, is utilized for visualization of liquid flow patterns. The cavity effect on the flow in the microchannel is found to be very small, with the mass flow rate increasing slightly with increasing number of cavities. The flow pattern in the cavity depends on two control parameters; it is fully attached only if both the reduced Reynolds number and the cavity number are small. A flow regime map has been constructed, where the critical values for the transition from attached to separated flow are determined. The numerical computations reveal another control parameter, the cavity aspect ratio. The flow in the cavity is similar only if all three control parameters are the same. Finally, the vorticity distribution and related circulation in the cavity are analyzed. [1546].  相似文献   

14.
The flow characteristics of water through the in-line and staggered pin-fin microchannels with length of 25 mm, width of 2.4 mm and height of 0.11 mm were studied experimentally. The flow transition was identified as a sudden increasing slope in both pressure drop versus mass flow rate curve and friction factor versus Reynolds number curve for in-line pin-fin microchannels, but it did not occur for staggered pin-fin microchannels. The effect of pin-fin arrangements on the flow transition was not reported in the previous literature. With the aid of microparticle image velocimetry (Micro-PIV) technology, the streamlines, velocity fields and velocity fluctuation fields of flow through the pin-fin microchannels were captured to explain the flow transition, and the effect of pin-fin arrangements on the flow transition was analyzed for the first time. It was found that at the critical Reynolds number where the flow transition occurred for the in-line pin-fin microchannels, the steady double-vortex wake flow changed to the unsteady vortex-shedding wake flow. The occurrence of vortex shedding caused an obvious change in main stream from straight flow to wavy flow and further induced significant increases of transversal velocity and velocity fluctuations, which induced strong flow disturbance in transversal directions and large additional pressure drop, and finally caused the flow transition in the in-line pin-fin microchannels. For the staggered pin-fin microchannels, the main stream through the pin-fin arrays was found to be already the wavy flow before the vortex shedding. Thus, the transversal velocity and velocity fluctuations induced by the vortex shedding were relatively small, and therefore, the flow transition with an abrupt pressure drop increase was not observed in the staggered pin-fin microchannels.  相似文献   

15.
In this paper, a spiral microchannel was fabricated to systematically investigate particle dynamics. The focusing process or migration behavior of different-sized particles in the outlet region was presented. Specifically, for focused microparticles, quantitative characterization and analysis of how particles migrate towards the equilibrium positions with the increase in flow rate (De = 0.31–3.36) were performed. For unfocused microparticles, the particle migration behavior and the particle-free region’s formation process were characterized over a wide range of flow rates (De = 0.31–4.58), and the emergence of double particle-free regions was observed at De ≥ 3.36. These results provide insights into the design and operation of high-throughput particle/cell filtration and separation. Furthermore, using the location markers pre-fabricated along with the microchannel structures, the focusing or migration dynamics of different-sized particles along the spiral microchannel was systematically explored. The particle migration length effects on focusing degree and particle-free region width were analyzed. These analyses may be valuable for the optimization of microchannel structures. In addition, this device was successfully used to efficiently filter rare particles from a large-volume sample and separate particles of two different sizes according to their focusing states.  相似文献   

16.
Compared to object-based registration, feature-based registration is much less complex. However, in order for feature-based registration to work, the two image stacks under consideration must have the same acquisition tilt angle and the same anatomical location - two requirements that are not always fulfilled. In this paper, we propose a technique that reconstructs two sets of medical images acquired with different acquisition angles and anatomical cross sections into one set of images of identical scanning orientation and positions. The space correlation information among the two image stacks is first extracted and is used to correct the tilt angle and anatomical position differences in the image stacks. Satisfactory reconstruction results were presented to prove our points.  相似文献   

17.
Electroosmotic flow in microchannels with prismatic elements   总被引:1,自引:0,他引:1  
Fundamental understanding of liquid flow through microchannels with 3D prismatic elements is important to the design and operation of lab-on-a-chip devices. In this paper, we studied experimentally and theoretically the electroosmotic flow (EOF) in slit microchannels with rectangular 3D prismatic elements fabricated on the bottom channel wall. The average electroosmotic velocity measured by the current-monitoring technique was found lower than that in a smooth microchannel. This velocity reduction becomes larger in microchannel with larger but less number of the prisms even though the space taken by the prisms are identical. The velocity distribution and streamlines on two typical horizontal planes in the microchannel are measured and visualized by a particle-based technique. These experimental observations are in good agreement with the numerical simulation. The comparison of streamlines near the prisms in the pressure-driven flow with that in the EOF showed that the EOF was more sensitive to the local geometry.  相似文献   

18.
19.
20.
The oblique collision efficiency of nanoparticles at different colliding angles in Brownian coagulation is investigated. A model of central oblique collision between two nanoparticles is presented to derive equations which are solved to get the collision efficiency by considering van der Waals force and elastic deformation force. Based on the calculated data of collision efficiency under different colliding angles and particle diameters, a new expression relating central oblique collision efficiency at different colliding angles to particle diameter is brought forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号