首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改性煤基活性炭对Cr(Ⅵ)吸附性能的试验   总被引:1,自引:0,他引:1  
研究以改性煤基活性炭为吸附剂对Cr(Ⅵ)进行静态吸附试验,探讨了吸附时间、溶液pH、吸附剂质量、Cr(Ⅵ)起始质量浓度对吸附剂吸附性能的影响.试验表明,煤基活性炭经改性后,对Cr(Ⅵ)具有良好的吸附性能;在室温时酸性条件下能快速迭到吸附平衡,Cr(Ⅵ)去除率可迭99%以上.改性煤基活性炭对Cr(Ⅵ)吸附效率明显提高。  相似文献   

2.
为研究改性竹炭对溶液中Cr(VI)的吸附性能,考察了pH值、吸附时间、溶液初始浓度和改性竹炭用量对吸附性能的影响.结果表明,当溶液呈强酸性时,竹炭和改性竹炭均有很好的吸附效果;溶液呈弱酸性时。竹炭几乎不吸附;而改性竹炭却有较好的吸附性能,且经1000℃高温煅烧和氧化改性后的竹炭的吸附效果最佳.溶液初始浓度减小,改性竹炭用量增大,吸附率增大.当Cr(VI)初始质量浓度为40mg/L时。其饱和吸附量约为5mg/g,吸附平衡时间约为48h.采用一级、二级吸附速率方程对吸附能力的影响进行拟合,表明二级吸附动力学比一级吸附动力学更符合改性竹炭的动态吸附过程.  相似文献   

3.
为了提高活性炭对锑的去除效果,以颗粒活性炭为基础,采用不同浓度的高锰酸钾溶液对颗料活性炭进行冷凝回流,并利用扫描电镜(SEM)、激光粒度仪、全自动比表面、孔隙分析仪(BET)和傅里叶红外光谱仪(FTIR)对改性前后的物化性能进行表征.通过对水中Sb(Ⅲ)的静态吸附试验,考察pH值、原溶液中锑的浓度、吸附剂投加量、吸附时间和温度对吸附效果的影响.结果表明,在Sb(Ⅲ)初始质量浓度为1.5 mg/L、吸附剂投加量为1.5 g/L、温度为298 K、pH值为3.00的条件下,用0.01、0.05和0.1mol/L的高锰酸钾溶液改性的活性炭对锑的去除率分别为87.38%、97.85%和99.04%,吸附过程较好地符合Freundlich吸附等温线.在实验中,pH值对吸附效果的影响较大.  相似文献   

4.
胶原纤维固化杨梅单宁对Cr(VI)的吸附   总被引:1,自引:0,他引:1  
研究了胶原纤维固化杨梅单宁(IBT)对Cr(VI)的吸附特性及机理。实验表明,Cr(VI)吸附容量随pH值降低而增加,低温更有利于Cr(VI)的吸附。当吸附剂用量为0.100 g,温度为303 K,pH为2.0,溶液体积为100 ml,Cr(VI)初始浓度为100mg·L-1时, IBT对Cr(VI)吸附容量为78.5 mg·g-1。Freundlich方程可以很好地描述吸附剂对Cr(VI)的吸附等温线。动力学研究表明,初始吸附进行得很快,当吸附进行到500 min时,吸附达平衡。吸附动力学可以很好地用拟二级速率方程来描述,计算所得平衡吸附量与实测值误差很小。IBT对Cr(VI)的吸附是氧化还原吸附。Cr(VI)被IBT还原成Cr(III)后,再与吸附剂结合而被吸附。  相似文献   

5.
探讨了硫酸改性活性炭的制备方法,以及改性炭吸附去除水中Cr(VI)的效果、条件与作用机理.结果表明,硫酸改性活性炭制备方法为:将5 g原炭浸泡在100 mL浓度为1 mol/L的硫酸溶液中改性时间4 h,改性温度60℃.改性炭吸附去除Cr(VI)的最佳方式为:溶液pH值3-5,改性炭投加比为1:100(重量比),(补充单位),Cr(VI)去除率为95.6%(较原炭提高了19.6%).改性炭强化Cr(VI)去除的机理主要是:改性炭表面酸性基团含量显著增加,表面极性和亲水性增强,因而对亲水性的Cr2O72-离子吸附能力增强;且活性炭在改性过程中表面形成了大量带正电荷的基团,强化了与Cr2O72-负离子的异电吸附作用.  相似文献   

6.
为研究改性竹炭对溶液中Cr(Ⅵ)的吸附性能,考察了pH值、吸附时间、溶液初始浓度和改性竹炭用量对吸附性能的影响.结果表明,当溶液呈强酸性时,竹炭和改性竹炭均有很好的吸附效果;溶液呈弱酸性时,竹炭几乎不吸附;而改性竹炭却有较好的吸附性能,且经1000℃高温煅烧和氧化改性后的竹炭的吸附效果最佳.溶液初始浓度减小,改性竹炭用量增大,吸附率增大.当Cr(Ⅵ)初始质量浓度为40 mg/L时,其饱和吸附量约为5 mg/g,吸附平衡时间约为48 h.采用一级、二级吸附速率方程对吸附能力的影响进行拟合,表明二级吸附动力学比一级吸附动力学更符合改性竹炭的动态吸附过程.  相似文献   

7.
氨解改性煤基活性炭电极材料的电化学性能   总被引:1,自引:0,他引:1  
以印尼褐煤为原料、KOH活化法制备的煤基活性炭,采用氨水在高压条件下对其进行改性,应用N2吸附仪、傅里叶变换红外光谱(FTIR)表征了活性炭的孔结构和表面化学性质,测定了活性炭制作的电极在3mol/L KOH电解液中的电化学性能.结果表明,经过氨水高压改性处理的活性炭的比表面积和孔结构变化不大,但改性后活性炭表面的N原子含量增多,活性炭表面负载上一定量的C-N,N-H和-NO2等含氮官能团;改性后活性炭的比电容可达348F/g,比改性前提高27%;改性后活性炭电极的导电性增强,循环充放电性能更好,在42.5mA/g的电流密度下经1 000次循环充放电,比电容的保持率可达98.9%.  相似文献   

8.
表面改性活性炭对CO2的吸附性能   总被引:9,自引:0,他引:9  
研究了用H2O2,HNO3加醋酸铜溶液进行表面改性后的活性炭对CO2的吸附性能,分析了改性前后的活性炭的表面化学性质,测定了273K下的吸附等温线,用D-A方程对吸附等温线进行了很好的拟合,探讨了表面改性对活性炭表面化学性质的影响及其表面化党性民吸附性能之间的关系。  相似文献   

9.
研究了胶原纤维固化杨梅单宁(IBT)对Cr(Ⅵ)的吸附特性及机理.实验表明,Cr(VI)吸附容量随pH值降低而增加,低温更有利于Cr(Ⅵ)的吸附.当吸附剂用量为0.100 g,温度为303 K,pH为2.0,溶液体积为100 ml,Cr(Ⅵ)初始浓度为100mg·L~(-1)时,IBT对Cr(Ⅵ)吸附容量为78.5 mg·g~(-1). Freundlich方程可以很好地描述吸附剂对Cr(Ⅵ)的吸附等温线.动力学研究表明,初始吸附进行得很快,当吸附进行到500 min时,吸附达平衡.吸附动力学可以很好地用拟二级速率方程来描述,计算所得平衡吸附量与实测值误差很小.IBT对Cr(Ⅵ)的吸附是氧化还原吸附.Cr(Ⅵ)被IBT还原成Cr(Ⅲ)后,再与吸附剂结合而被吸附.  相似文献   

10.
在N,N-二甲基甲酰胺溶剂中以杨木木屑为原料,与环氧氯丙烷交联,然后与二甲胺反应,可以对木质纤维素改性得到阴离子交换剂.阴离子交换剂对水溶液中的Cr(Ⅵ)具有良好的吸附性能.交换剂对水溶液中Cr(Ⅵ)的吸附服从Langmuir等温吸附模型,吸附为自发过程,吸附热为-29.67 kJ·mol-1.在289 K、交换剂的用量2.0 g·L-1、初始溶液的pH≈3.0时,对Cr(Ⅵ)的最大吸附容量为144.25 mg·g-1,313 K时为118.45 mg·g-1.拟二级动力学模型能较好地描述对Cr(Ⅵ)的吸附过程.初始浓度为30、100 mg·L-1时,表观吸附活化能分别为26.30 kJ·mol-1和31.72kJ·mol-1.  相似文献   

11.
活性炭的改性及吸附性能   总被引:1,自引:0,他引:1  
亚甲基蓝属于噻嗪类染料,脱色较难.分别采用普通浸渍法,超声波浸渍法,将硫酸镁负载到活性炭上,以增强其对亚甲基蓝的脱色和吸附效果.结果表明,用超声浸渍法处理后的活性炭的脱色效果最佳,普通浸渍法次之,它们的脱色率分别达到62.81%和43.51%,未改性活性炭的脱色率仅为33.29%.实验中还发现,超声波改性有助于提高活性炭的吸附容量和吸附速率,改性前后活性炭均遵循Langmuir方程.  相似文献   

12.
研究初始浓度,温度,pH值对氨水改性后活性炭吸附苯酚效果的影响.随着苯酚初始浓度的增加,对苯酚的吸附量也相应增加;温度会影响吸附效果,当温度从20℃增加到45℃,相同条件下,苯酚的吸附量有所下降;微酸性有利于吸附,pH值为6左右时,活性炭对苯酚的吸附效果最佳.  相似文献   

13.
为了脱除水体Cr(VI),600℃下于Fe2Ni/γ-Al2O3上苯催化化学气相分解(catalytic chemical vapor decomposition )制备碳纳米管( carbon nanotubes , CNTs ),粗 CNTs 经混酸(H2SO4/HNO3,3∶1, volume ratio,体积比),超声氧化纯化,纯化的同时赋予其表面功能基团,进一步地,表面包覆功能分子聚乙烯醇( polyvinyl alcohol ,PVA)。系统探讨了改性CNTs对高浓度水体Cr( VI)离子的吸附脱除,结果表明,CNTs的氧化纯化使其表面植入-COOH、-OH等功能基团,进一步地,富含羟基功能基团的PVA分子在CNTs表面包覆,赋予CNTs表面活性的同时,显著提高CNTs的亲水性能。观察到了随氧化纯化和PVA修饰的CNTs上高浓度Cr( VI)离子吸附的逐步和明显提升,吸附热力学和动力学研究表明,CNTs表面Cr( VI)的吸附符合Freundlich热力学和准二级动力学特征。随氧化纯化和PVA修饰, CNTs对水体Cr ( VI )吸附性能的提高可能与CNTs亲水性能的提升以及表面功能化基团对Cr( VI)的化学吸附的促进相关联。  相似文献   

14.
动力学研究表明,CHT能迅速和有效的从水溶液中吸附铬(VI),在初始铬(VI)浓度20mg/L和pH3.2时,CHT对铬(VI)的吸附1小时内可达90%,按Lagergren方程计算出一级速率常数为3.05h-1,吸附平衡的实验数据符合Langmeruir和Freundich关系式,光谱研究表明,壳聚糖中—NH+3与Cr2O2-7离子的相互作用主要是以氢键形式存在的静电引力。  相似文献   

15.
经不同质量分数的酸、处理时间、焙烧温度等条件对活性炭进行改性,利用静态法研究了改性活性炭对噻吩的吸附脱硫性能。通过BET表征,对三种活性炭吸附剂进行比表面积分析。实验结果表明:经质量分数为50%的HNO3,100℃,6h处理的活性炭的脱硫性能最优(约71.0%),惰性气氛下高温焙烧活性炭的脱硫率比未处理活性炭的脱硫率普遍提高,增幅约20%。说明物理微观结构不是影响脱硫率变化的主要因素。  相似文献   

16.
氧化法改性煤基活性炭和椰壳活性炭的研究   总被引:17,自引:3,他引:17  
用不同浓度的硝酸(HNO3)和过二硫酸铵((NH4)2S2O8)对煤基活性炭和椰壳活性炭进行了氧化改性,并用N:吸附、Beohm′s滴定、质量滴定和FT-IR进行了表面性质表征,实验结果表明,高浓度HNO3处理使表面积和孔体积降低,表明强氧化的生成物堵塞细孔,而低浓度HNO3的处理使表面和孔容有所增加,表明有氧化腐蚀打通封闭的细小微孔.值得注意的现象是(NH4)2S2O8的氧化改变了煤基炭的微孔孔径分布,但却对椰壳炭的微孔孔径分布几乎没有影响,这可能是酸性氧化溶解了煤基炭的灰分使孔隙结构发生改变.Beohm′s滴定发现HNO3氧化使表面羧基增加明显而(NH4)2S2O8氧化使表面酚羟基和内酯基含氧基团增加较多并由FT-IR图谱得以证实.质量滴定和Beohm′s滴定结果表明通过测定PZC值可方便指示出表面的酸碱性。  相似文献   

17.
改性活性炭吸附净化二氧化硫实验研究   总被引:2,自引:0,他引:2  
本试验装置采用固定床吸附柱,以经过酸改性活性炭作为吸附剂,吸附剂比表面积约为1200 m2/g,吸附质为模拟SO2废气。在不同入口气体浓度下,测定吸附质出口浓度,绘制吸附净化穿透曲线图,并由此计算出静活性值。试验结果表明:吸附柱填装活性炭量为100g,气体流量50L/min,大气压为101300Pa,温度20℃,吸附质浓度在500~1000ppm间变化时,活性炭吸附剂的静活性值平均提高30%,改性的活性炭静活性值比未改性活性炭平均提高25%。  相似文献   

18.
以常见柳条为生物炭原料,通过十六烷基三甲基氯化铵(CTMAC)进行阳离子表面活化,与零价铁、海藻酸钠混合制备了零价铁/阳离子表面活性剂/生物炭(Fe0?MBC)凝胶微球,探讨了其对水体Cr(VI)的吸附能力。借助XRF、FTIR、XRD以及Zeta电位等分析手段,对Fe0?MBC凝胶微球的结构与性能进行研究。通过分析反应时间、环境温度及pH对吸附的影响,在吸附动力学、等温线模型的基础上,初步探讨了吸附机制。通过吸附?解析循环实验,研究了Fe0?MBC凝胶微球的再生性能。结果表明,Fe0?MBC凝胶微球对Cr(VI)的吸附与准一级动力学和Langmuir等温吸附模型拟合度较高;Cr初始质量浓度100 mg/L、负载质量分数分别为5%和10%的零价铁的CTMAC活化生物炭对Cr(VI)的去除率在2 h时分别为89%、97%,最大饱和吸附量分别为33.777 9、42.562 0 mg/g;Fe0?MBC凝胶微球作为一种成本低、效率高的环境功能材料,对去除废水中的Cr(VI)具有良好的应用前景。  相似文献   

19.
采用稀硝酸氧化和氮气气氛高温处理两种方法对市售活性炭进行表面改性,采用比表面分析仪、红外吸收光谱和Boehm滴定对改性前后活性炭进行表征,并测定活性炭对苯酚的吸附等温线,探讨影响活性炭对苯酚吸附能力的因素。结果表明:表面改性不仅增加了活性炭的比表面积和孔容,还改变了其表面化学性质。活性炭表面化学性质对苯酚吸附能力有着更重要影响,随着活性炭表面酸性官能团的增加,活性炭对苯酚吸附能力下降;酸性官能团数量减少,吸附能力增加。  相似文献   

20.
以太西无烟煤和灵武烟煤的配合煤为原料在硝酸锰存在下经水蒸气活化制备了活性炭,利用气体吸附仪和电化学工作站表征其孔结构及循环伏安、交流阻抗和恒流充放电等电化学性能.结果表明,比表面积SBET小于900m2/g时,比电容与比表面积成正比,SBET大于900m2/g时,比电容与比表面积成反比;活性炭的总孔容和微孔孔容对比电容的影响与比表面积存在相似的规律;中孔对比电容的影响最为显著,比电容随中孔孔容的增加迅速增加,在0.11~0.14cm3/g区间增幅明显减小,大于0.14cm3/g后迅速减小;制备的煤基活性炭电极的电化学行为表现为双电层电容与准电容协同作用;活性炭电极接触电阻很小,最大约为0.8Ω.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号