首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the thickness of crystalline silicon solar cells decreases, light loss cannot be avoided due to the absorption limit in long wavelength light. Internal rear side reflection can be enhanced by polishing the rear surface. The rear polishing processes are performed before the texturing and before and after doping the emitter layer to optimize the solar cell fabrication process sequences. All cells made by rear surface polishing showed improved light trapping in long wavelength region (900-1100 nm) compared to that in the conventional cells. However, silicon solar cells fabricated by rear polishing before and after doping have similar (35.5 mA/cm2) or lower (35.26 mA/cm2) short circuit current density compared to the cells produced by the conventional process (35.59 mA/cm2) due to pore damage to the anti-reflection layer and the surface of the emitter layer during rear polishing. This surface damage was effectively prevented adapting the rear surface polishing before the front surface texturing, which led to increasing the current density from 35.59 to 36.29 mA/cm2.  相似文献   

2.
The aim of this work is to implement simple edge isolation techniques in buried contact solar cell (BCSC) process by preserving the active cell area. Here we present results of two simplified edge isolation techniques for BCSC and they are compared with the standard process incorporating mechanical edge isolation using a dicing saw. The first technique is chemical wet etching of the solar cell's rear side in an inline system recently developed by University of Konstanz and Rena. The second technique is edge removal carried out in a fluoride/oxide radicals environment of a Asyntis plasma etcher. While the shunt resistance Rsh obtained with wet etching is between 1500 and 7000 Ω cm2, the standard process shows Rsh values ranging from 2100–6300 Ω cm2. The Rsh after plasma processing is between 1000 and 3600 Ω cm2. These cell results show that both wet and plasma etching achieve results close to mechanical edge isolation.However, a slight reduction of short circuit current is observed for the cells undergone standard as well as plasma processing. This is due to the presence of floating volume shunts formed at the rear n–p+ junction, which are not removed by either the standard or plasma process. These shunts do not influence the IV-curve of the solar cells and are nearly invisible with conventional thermography, as they are not connected to the front side emitter grid. Hence, light-modulated lock-in thermography measurements were carried out to analyse these shunts.  相似文献   

3.
In order to optimize the efficiency of multicrystalline silicon solar cells, the influence of specific process steps and sequences were studied. Therefore clean-room high efficiency as well as industrial screen-printed cells were fabricated. Benefits are found in choosing a substrate with lower base resistivity, using front and rear oxide passivation, using hydrogen passivation for bulk and surfaces, the use of Si3N4 with a double function i.e. as an anti-reflection and passivation layer and the use of mechanical V-grooving. Efficiencies of 17% are found on 4 cm2 clean-room fabricated cells and 15.2% has been obtained on 100 cm2 V-grooved screenprinted industrial cells.  相似文献   

4.
In this paper we describe the fabrication and characteristics of highly efficient and stable CdTe/CdS thin film solar cells. Our cells are prepared in three subsequent phases. Firstly, we deposit via sputtering, without solution of continuity a layer of CdS on top of the front contact made up of a double layer of ITO/SnO2 deposited on a soda lime glass substrate. The second phase consists in the treatment of the CdS layer, which is the key factor for the fabrication of a good heterojunction, with CdCl2 and in the subsequent deposition of the CdTe layer via close space sublimation technique. Finally, the back contact is fabricated via sputtering making use of the Sb2Te3 compound which guarantees the cell stability. Under global AM1.5 conditions the open-circuit voltage, short-circuit current and fill factor of our best cell, fabricated without antireflecting coating and normalized to the area of 1 cm2, were Voc=858 mV, Jsc=23 mA/cm2 and ff=74%, respectively, corresponding to a total area conversion efficiency of η=14.6%.  相似文献   

5.
In the present paper, the authors discuss the application of amorphous p–i–n solar cells containing i-layers which are deposited at high substrate temperatures as top cells in amorphous silicon/microcrystalline silicon tandem (“micromorph”) solar cells. Increasing the substrate temperature for the deposition of intrinsic a-Si : H results in a reduced optical gap. The optical absorption is enhanced and thereby the current generation. A high-current generation within a relatively thin amorphous top cell is very interesting in the context of micromorph tandem cells, where the amorphous top cell should contribute a current of at least 13 mA/cm2 for a total cell current density of 26 mA/cm2. A detailed study of the intrinsic material deposited by VHF-GD at 70 MHz at substrate temperatures between 220°C and 360°C is presented, including samples deposited from hydrogen-diluted silane plasmas. The stability of the films against light soaking is investigated employing the μ0τ0 parameter, which has been shown to be directly correlated to the cell performance. The paper discusses in detail the technological problems arising from the insertion of i-layers deposited at high substrate temperatures into solar cells. These problems are specially pronounced in the case of cells in the p–i–n (superstrate) structure. The authors demonstrate that an appropriate interface layer at the p/i-interface can largely reduce the detrimental effects of i-layer deposition at high temperatures. Finally, the application of such optimized high-temperature amorphous cells as top cells in micromorph tandem cells is discussed. Current densities of 13 mA/cm2 in the top cell are available with a top cell i-layer thickness of only 250 nm.  相似文献   

6.
Annealing effects of the single-crystalline silicon solar cells with hydrogenated microcrystaline silicon (μc-Si : H) film were studied to improve the conversion efficiency. Boron-doped (p+) μc-Si : H film was deposited in a RF plasma enhanced chemical vapor deposition system (RF plasma CVD) on the rear surface of the cell. With the optimized annealing conditions for the substrate, the conversion efficiency of 21.4% (AM1.5, 25°C, 100 mW/cm2) was obtained for 5 × 5 cm2 area single crystalline-solar cell.  相似文献   

7.
In this paper, we present a multi-crystalline solar cell with hexagonally aligned hemispherical concaves, which is known as honeycomb textured structure, for an anti-reflecting structure. The emitter and the rear surface were passivated by silicon nitride, which is known as passivated emitter and rear (PERC) structure. The texture was fabricated by laser-patterning of silicon nitride film on a wafer and wet chemical etching of the wafer beneath the silicon nitride film through the patterned holes. This process succeeded in substituting the lithographic process usually used for fabricating honeycomb textured structure in small area. After the texturing process, solar cells were fabricated by utilizing conventional fabrication techniques, i.e. phosphorus diffusion in tube furnace, deposition of anti-reflection film and rear passivation film by chemical vapor deposition, front and rear electrodes formation by screen printing, and contact formation by furnace. By adding relatively small complicating process to conventional production process, conversion efficiency of 19.1% was achieved with mc-Si solar cells of over 200 cm2 in size. The efficiency was independently confirmed by National Institute of Advanced Industrial Science and Technology (AIST).  相似文献   

8.
The modifications of the surface and subsurface properties of p-type multicrystalline silicon (mc-Si) after wet chemical etching and hydrogen plasma treatment were investigated. A simple heterojunction (HJ) solar cell structure consisting of front grids/ITO/(n)a-Si:H/(p)mc-Si/Al was used for investigating the conversion efficiency. It is found that the optimized wet chemical etching and cleaning processes as a last technological step before the deposition of the a-Si:H emitter are more favorable to HJ solar cells fabrication than the hydrogenation. Solar cells on p-type mc-Si were prepared without high-efficiency features (point contacts, back surface field). They exhibited efficiencies up to 13% for a cell area of 1 cm2 and 12% for a cell area of 39 cm2.  相似文献   

9.
This paper reports the recent results of improving the radiation hardness of silicon solar cells, which is SHARP and NASDA's project since 1998 (Tonomura et al., Second World Conference on Photovoltaic Solar Energy, 1998, pp. 3511–3514). Newly developed 2×2 cm2 Si solar cells with ultrathin substrates and both-side junction (BJ) structure showed 72.0 mW (13.3% efficiency) maximum output power at AM0, 28°C after 1 MeV electron irradiation up to 1×1015 e/cm2 and the best cell showed 72.5 mW (13.4%) maximum output power. These solar cells have p–n junctions at both front and rear surfaces and showed less radiation degradation and better remaining factor than previous solar cells.  相似文献   

10.
High quality epitaxial indium zinc oxide (heavily indium oxide doped) (epi-n-IZO) thin films were optimized by laser-molecular beam epitaxy (L-MBE) i.e., pulsed laser deposition (PLD) technique for fabricating novel iso- and hetero-semiconductor–insulator–semiconductor (SIS) type solar cells using Johnson Matthey “specpure”- grade 90% In2O3 mixed 10% ZnO (as commercial indium tin oxide (ITO) composition) pellets. The effects of substrate temperatures, substrates and heavy indium oxide incorporation on IZO thin film growth, opto-electronic properties with 1 0 0 silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP) wafers were studied. As well as the feasibility of developing some novel models of iso- and hetero-SIS type solar cells using epi-IZO thin films as transparent conducting oxides (TCOs) and 1 0 0 oriented Si, GaAs and InP wafers as base substrates was also studied simultaneously. The optimized films were highly oriented, uniform, single crystalline approachment, nano-crystalline, anti-reflective (AR) and epitaxially lattice matched with 1 0 0 Si, GaAs and InP wafers without any buffer layers. The optical transmission T (max) 95% is broader and absolute rivals that of other TCOs such as ITO. The highest conductivity observed is σ=0.47×103 Ω−1 cm−1 (n-type), carrier density n=0.168×1020 cm−3 and mobility μ=123 cm2/V s. From opto-electronic characterizations, the solar cell characteristics and feasibilities of fabricating respective epi-n-TCO/1 0 0 wafer SIS type solar cells were confirmed. Also, the essential parameters of these cells were calculated and tabulated. We hope that these data be helpful either as a scientific or technical basis in semiconductor processing.  相似文献   

11.
A drift-field in the base region of a solar cell can enhance the effective minority-carrier diffusion length, thus increasing the long-wavelength spectral response and energy-conversion efficiency. Silicon thin-films of 20–32 μm thickness as a cell base layer were grown by liquid-phase epitaxy (LPE) on electronically inactive heavily doped p++-type CZ silicon substrates. Growth was performed from In/Ga solutions, and in a purified Ar/4%H2 forming gas ambient, rather than pure H2. The Ga dopant concentration was tailored throughout the p-type film to create a drift-field in the base layer of the solar cell. An independently confirmed efficiency of 16.4% was achieved on such an LPE drift-field thin-film silicon solar cell with a total cell area of 4.11 cm2. Substrate thinning, combined with light trapping which is encouraged by the textured front surface and a highly reflective aluminium rear surface, is demonstrated to improve the long-wavelength response and thus, increase cell efficiency by a factor of up to 23.7% when thinned to a total cell thickness of 30 μm.  相似文献   

12.
Intrinsic microcrystalline silicon opens up new ways for silicon thin-film multi-junction solar cells, the most promising being the “micromorph” tandem concept. The microstructure of entirely microcrystalline p–i–n solar cells is investigated by transmission electron microscopy. By applying low pressure chemical vapor deposition ZnO as front TCO in p–i–n configurated micromorph tandems, a remarkable reduction of the microcrystalline bottom cell thickness is achieved. Micromorph tandem cells with high open circuit voltages of 1.413 V could be accomplished. A stabilized efficiency of around 11% is estimated for micromorph tandems consisting of 2 μm thick bottom cells. Applying the monolithic series connection, a micromorph module (23.3 cm2) of 9.1% stabilized efficiency could be obtained.  相似文献   

13.
This paper describes the investigations of CIS-based solar cells with a new InxSey (IS) buffer layer. Studies were concentrated on determining the deposition conditions to get InxSey thin films with adequate properties to be used in substitution of the CdS buffer layer, usually employed in the fabrication of this type of devices. Before the solar cell fabrication, the buffer layers grown by evaporation of the In2Se3 compound were characterized through transmittance and X-ray diffraction measurements. It was found that good results can be obtained using indium selenide film as the buffer layer, grown in the In2Se3 phase.Solar cells with structure Mo/CIS/In2Se3/ZnO were fabricated. The ZnO layer was deposited by reactive evaporation and the absorber CIS layer was grown on Mo by a two-stage process. The preliminary results obtained with this type of solar cells are Jsc=30.8 mA/cm2, Voc=0.445 V, FF≈0.6 and η=8.3% with an irradiance of 100 mW/cm2. Solar cells fabricated using a CdS buffer layer deposited by CBD on CIS substrate, prepared under the same conditions used in the fabrication of Mo/CIS/In2Se3/ZnO cells, gave the following results: Voc=0.43 V, Jsc=34 mA/cm2, FF≈0.63 and η=9.2%.  相似文献   

14.
Semiconducting cuprous oxide films were prepared by electrodeposition onto commercial conducting glass coated with indium tin oxide deposited by spraying technique. The cuprous oxide (Cu2O) films were deposited using a galvanostatic method from an alkaline CuSO4 bath containing lactic acid and sodium hydroxide at a temperature of 60°C. The film's thickness was about 4–6 μm. This paper includes discussion for Cu2O films fabrication, scanning electron microscopy and X-ray diffractometry studies, optical properties and experimental results of solar cells. The values of the open circuit voltage Voc of 340 mV and the short circuit current density Isc of 245 μA/cm2 for ITO/Cu2O solar cell were obtained by depositing graphite paste on the rear of the Cu2O layer. It should be stressed that these cells exhibited photovoltaic properties after heat treatment of the films for 3 h at 130°C. An electrodeposited layer of Cu2O offers wider possibilites for application and production of low cost cells, both in metal–semiconductor and hetero-junction cell structures, hence the need to improve the photovoltaic properties of the cells.  相似文献   

15.
The photoelectrochemical properties of a solid-state photoelectrochemical cell (PEC) based on poly(3-hexylthiophene), P3HT, and an ion-conducting polymer electrolyte, amorphous poly(ethylene oxide), POMOE, complexed with I3/I redox couple has been constructed and studied. The current–voltage characteristics in the dark and under white light illumination, transient photocurrent and photovoltage studies, photocurrent action spectra for front and back side illuminations and an open-circuit voltage and short-circuit current dependence on light intensity have been studied. An open-circuit voltage of 130 mV and a short-circuit current of 0.47 μA cm−2 were obtained at light intensity of 100 mW/cm2. IPCE% of 0.024% for front side illumination (ITO/PEDOT) and IPCE% of 0.003% for backside illumination (ITO/P3HT) were obtained.  相似文献   

16.
In this work, we have investigated three different surface passivation technologies: classical thermal oxidation (CTO), rapid thermal oxidation (RTO) and silicon nitride by plasma enhanced chemical vapor deposition (PECVD). Eight different passivation properties including SiO2/SiNx stacks on phosphorus diffused (100 and 40 Ω/Sq) and non-diffused 1 Ω cm FZ silicon were compared. Both types of SiO2 layers, CTO and RTO, yield a higher effective lifetime on the emitter surface than on the non-diffused surface. For the SiNx layers the situation is reverted. On the other hand, with SiO2/SiNx stacks high lifetimes are obtained not only non-diffused surface but also on the diffused surface. Thus, we have chosen the RTO/SiNx stack layers as front and rear surface passivation in solar cells, which passivate relatively good on the surface and has very low-weighted reflection. On planar cells passivated with RTO/SiNx a very high Voc of 675.6 mV and a Jsc of 35.1 mA/cm2 was achieved. Compared to a planar cell using CTO the efficiency of RTO/SiNx cell is 0.8% higher (4.5% relative). It can be concluded that the RTO/SiNx layers are the optimal passivation for the front and rear surface. On the other hand, for textured cells, the Jsc and FF of RTO/SiNx cells are lower than those of CTO cells. The main reasons of these Jsc and FF losses were also discussed systematically.  相似文献   

17.
A record efficiency of 15.8% (independently confirmed at Fraunhofer ISE calibration laboratory) is reported on large area (120 cm2) n-type mc-Si rear junction Si solar cell. Minor modifications to the industrial process for p-type, such as optimization of Al-alloyed screen-printed emitter and phosphorus front surface field, led to an improvement in cell properties. Large improvement in short-circuit current of the cell was possible by decreasing the cell thickness to 130 μm.  相似文献   

18.
In order to manufacture high-efficiency Si solar cells with a passivated rear surface and local contacts, it is necessary to develop both an excellent rear-passivation scheme compatible with screen-printing technology and a robust patterning technique for local contact formation. In this work, we have fabricated Si solar cells on ∼130 μm thick substrates using manufacturable processing, where rear side was passivated with a plasma-enhanced chemical vapor deposited SiOx/SiNx/SiOxNy stack and local back contacts using laser. As a result of both the rear surface passivation stack and the laser-fired local contacts, cell efficiencies of up to 17.6% on a 148.6 cm2 Float-zone Si wafer and 17.2% for a 156.8 cm2 multicrystalline Si wafer were achieved. PC-1D calculations revealed that the cells had a back surface recombination velocity (BSRV) of ∼400 cm/s and a back surface reflectance (BSR) of over 90%, as opposed to standard full Al-BSF cells having a BSRV of ∼800 cm/s and a 70% BSR. This result clearly indicates that the new technique of the passivation scheme and the patterning using laser developed in this study are promising for manufacturing high-efficiency PERC-type thin Si solar cells.  相似文献   

19.
We report fabrication of solar cell (n+-p-p+ structure) on black silicon substrates consisting of silicon nanowire (SiNW) arrays prepared by Ag induced wet chemical etching process in aqueous HF-AgNO3 solution. SiNW arrays surface has low reflectivity (<5%) in the entire spectral range (400-1100 nm) of interest for solar cells. The solar cells were fabricated by conventional cell fabrication protocol. Performance of three types of cells, namely cell with SiNW over the entire front surface, cell with SiNW only in the active device area and control cell (on planar surface), has been compared. It was found that cell based on selectively grown shorter length SiNW arrays has the best cell performance.  相似文献   

20.
“Heterojunction with intrinsic thin layer” solar cells combine the high efficiency of crystalline silicon (c-Si) cells, with the low cost of amorphous silicon technology. Here we use detailed numerical modeling and experiments to understand the influence, on the solar cell output parameters, of defects on the front and rear surfaces of the P-type c-Si wafer. Modeling indicates that the defects on the front surface of c-Si reduce the open-circuit voltage and fill factor, while those on the rear surface degrade mainly the short-circuit current density and fill factor, but only when their density exceeds 1012 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号