共查询到18条相似文献,搜索用时 62 毫秒
1.
为了提高模拟移动床控制系统PH传感器的可靠性,提出了一种基于两级RBF神经网络的故障诊断方法.该方法首先利用径向基(RBF)神经网络对传感器的输出序列建立预测模型,通过计算预测输出和实际输出的残差来检测故障的发生,然后时包含故障的残差信号利用小波变换进行特征提取,最后利用RBF诊断网络实现故障诊断.通过把这种方法应用到实际诊断测试中,可达到较准确的诊断结果. 相似文献
2.
3.
4.
5.
基于RBF神经网络的飞机发动机故障诊断研究 总被引:4,自引:0,他引:4
论述了径向基函数神经网络的基本网络结构和网络的学习及运行过程,结果表明:径向基神经网络具有极快的学习收敛速度。讨论了径向基神经网络在飞机发动机故障诊断中的应用,并对训练后的网络进行了仿真测试,仿真结果表明RBF网络有较高诊断正确率,且能满足实时诊断的要求。 相似文献
6.
基于RBF神经网络观测器飞控系统故障诊断 总被引:4,自引:3,他引:4
为了解决非线性系统采用解析方法进行故障诊断困难的问题,利用神经网络可逼近任意连续有界非线性函数的能力,提出了一种基于RBF神经网络观测器的故障检测与诊断方法,并详细论述了该故障诊断方法的构造原理。以含有非线性项的飞行控制系统的作动器模型为例,仅作动器的输入输出可测量,通过构造RBF神经网络观测器来拟合作动器系统模型,逼近其在正常情况下的输出。最后在飞控系统的闭环控制环境下,对作动器的三种典型故障进行了计算机仿真诊断,结果表明故障诊断方法是有效的。 相似文献
7.
针对传感器在自动化系统中的重要性,指出了传感器故障诊断的必要性、可行性以及实现的基本方法。根据神经网络的原理与特点,阐述了基于RBF神经网络的传感器故障诊断的基本理论和优点,提出了一种基于RBF神经网络用于高分子湿度传感器进行故障诊断的方法。 相似文献
8.
轴承是当代机械设备中一种重要零部件。轴承故障是机械设备故障的来源之一,因此对轴承故障的诊断研究具有重要意义。文章提出了一种基于粒子群优化径向基函数(Radial Basis Function,RBF)神经网络的算法,先用小波包分解将源信号分解成独立信号源,再构建独立特征值,将特征值输入RBF和改进后的RBF中识别故障。实验结论表明,改进后的算法有较好的故障诊断能力。 相似文献
9.
10.
在炼铁高炉热流强度分析系统中要用到温度、流量等传感器,为确保热流分析系统中传感器数据的可靠性及系统的连续、稳定运行,诊断系统用径向基函数(RBF)神经网络对传感器进行故障判断。系统由上位机、温度及流量采集装置、传感器等组成,采用RBF神经网络为每一个传感器建立预测模型,网络的输入为传感器采集信号最近的n个值,输出为该传感器在n+1时刻的预测输出值。网络通过在线学习实现对传感器的在线故障监测,经仿真分析表明:用RBF神经网络构建预测模型可满足实时性的诊断要求,提高了诊断系统的诊断精度。 相似文献
11.
针对瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障为研究对象,提出了一种基于减聚类( SCM)与粒子群( PSO)算法优化的RBF神经网络进行模式分类与辨识的瓦斯传感器故障诊断方法。首先,利用三层小波包分解得到各个节点的分解系数,采用一定的削减算法使故障的瞬态信号特征得到加强,获取最优的特征能量谱。再利用SCM ̄PSO算法优化RBF神经网络,使粒子的搜索速度更快,更有利于发现全局最优解。最后通过实验对比分析,该方法具有训练速度快、分类精度高的特点,辨识正确率在95%以上,能够显著提高故障诊断的速度和准确性。 相似文献
12.
13.
论述了小波神经网络的系统结构及算法,并根据齿轮振动信号的频域变化特征,提取特征向量作为输入,利用小波神经网络建立特征向量与故障模式之间的映射关系,建立了基于该算法的齿轮故障诊断模型。仿真结果表明:与传统的BP神经网络相比,该模型显著缩短了训练时间。该小波神经网络进行机械故障诊断是有效的。 相似文献
14.
非平稳工况下的齿轮故障检测是一项非常困难的工作,由于齿轮振动信号的复杂性,导致故障特征提取和故障诊断困难.针对这些问题,基于径向基(radial basis function, RBF)神经网络,提出一种在变速条件下齿轮的故障诊断方法 CIHDRFD.首先利用自适应白噪声的完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),将原始振动信号分解为多个固有的模态函数(intrinsic mode function, IMF),并通过计算其信息熵(information entropy, IE)筛选出IE最小的4个IMF作为特征IMF;然后利用希尔伯特变换(hilbert transform, HT)处理特征IMF并求出Hilbert包络谱,利用Hilbert包络谱构建故障特征向量;最后利用改进的双RBF神经网络进行故障检测.通过搭建齿轮故障检测平台验证CIHDRFD方法的有效性,实验结果表明, CIHDRFD方法适用于齿轮故障诊断,在速度波动为3%的情况下,诊断准确率... 相似文献
15.
结合小波变换和神经网络的优势给出小波神经网络的结构模型,研究了小波神经网络的学习算法;针对传统算法收敛速度慢等问题,从学习率和引入动量项两个方面对算法进行改进。应用小波网络对滚动轴承的典型故障进行实例诊断。以7216圆锥轴承在实验台上所测取的数据进行网络训练。用振动信号为网络输入向量,给出训练结果。仿真实例表明,采用小波神经网络能够很好地对故障进行分类,其收敛速度明显要快于相同条件BP神经网络,有效地实现了滚动轴承的故障诊断。 相似文献
16.
17.
18.
详细阐述了小波神经网络(WNN)的原理、结构,并对传统的BP算法进行了改进。以空调系统传感器故障检测问题为目标,提出了基于WNN的故障诊断方法。通过采集天津博物馆中的传感器数据,对训练好的WNN进行了传感器故障诊断能力的验证,对温度传感器的1℃偏差故障、0.05℃/s速率漂移故障、完全故障、与不同方差下的精度等级下降故障进行了仿真,结果表明:这种方法对传感器故障具有很好的诊断效果。 相似文献