首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After 3 years of different crop rotations in an organic farming experiment on a sandy soil in northwest Germany, spring triticale was cultivated on all plots in the fourth year to investigate residual effects on yield, nitrogen (N) leaching and nutrient status in the soil. Previous crop rotations differed in the way N was supplied, either by farmyard manure (FYM, 100 and 200 kg N ha−1 year−1) or by arable legumes like grass-red clover and field beans, or as a control with no N. Other crops in the rotations were maize, winter triticale and spring barley. Additional plots had a 3-year grass-clover ley, that was ploughed-in for spring triticale in the fourth year. Yields of spring triticale were moderate and largest for ploughed-in grassland leys and grass-red clover and plots that had previously received farmyard manure. The former crop rotation, including grassland break-up, had a significant effect on most yield and environmental parameters like residual soil mineral nitrogen (SMN) and N leaching and on the level of available K in the soil. The single crop harvested in the year before spring triticale had a significant effect on yield parameters of spring triticale, less so on SMN and N leaching in the fourth year and no effect on available nutrients (P, K, Mg) and pH in the soil. We conclude that the effects of arable legumes were rather short lived while ploughing of 3-year grassland leys had a profound influence on mineralization processes and subsequently on yield and N losses.  相似文献   

2.
The effect of rainfall and nitrogen (N) input on nitrate leaching in a rain-fed peanut–oilseed rape system on an acidic soil in subtropical China was investigated in a field lysimeter experiment from 1997 to 2000. Drainage and nitrate leaching were simulated using the Water and Nitrogen Management Model (WNMM). Nitrate concentrations in the drainage water and nitrate leaching increased with increasing N application rate. Annual leaching losses ranged from 21.1 to 46.3 kg N ha−1 (9.5–16.8%) for inputs between 0 and 150 kg N ha−1. Growth of oilseed rape decreased the nitrate concentration in the drainage water, but growing N fixing peanuts did not. Rainfall had a greater impact on nitrate leaching than crop uptake. Nitrate concentrations in the drainage water were relatively low (1.95–4.33 mg N l−1); this was caused by the high precipitation, the low nitrification rate, and the low residual nitrate in the soil. The loss of nitrate was low during the dry season (October–February) and in the dry year (rainfall 17% below average) mainly as a result of reduced drainage. WNMM satisfactorily simulated the inter-monthly variation in drainage and total nitrate leached, with respective relative root mean square errors of 42.7% and 70.2%, mean modelling efficiencies of 0.88 and 0.67, and mean relative errors of −3.82% and 21.8%. The modelled annual N losses were only 1–7% less than the observed values.  相似文献   

3.
Dairy farming is one of the main contributors to nitrate leaching to groundwater, particularly on soils that are susceptible to leaching, such as light well-drained sandy soils. In the Netherlands, as in many other European countries, these soils are predominantly used for dairy farming. A prototype dairy farming system that has been implemented in practice in 1989 has continuously been adapted since then to meet environmental standards (i.e. the EU-standard of 50 mg NO3 l−1) without reducing milk production intensity (11900 kg ha−1). After an initial decline in nitrate concentration from 193 mg l−1 to 63 upon implementation, it subsequently ‘stabilized’ at a level higher than the environmental standard: 55 mg l−1. The goal of this paper is to examine causes of excessive nitrate leaching. This was done by relating measured nitrate concentrations with management characteristics such as N balances, cropping patterns and grazing intensities. Special attention was paid to aspects that were supposed to be conducive for leaching: crop rotation of grass and maize and grazing. No evidence was found for enhanced nitrate leaching due to the rotation of grass with maize compared to permanent cultivation. This could be ascribed to the reduction in fertilization levels in first and second year maize with 90 and 45 kg N ha−1, respectively to account for the expected N release from the ploughed-in grass sod. Triticale was found to lead to higher leaching than grass or maize which is attributed to its poor growth in the period that it should function as catch crop in maize. Grazing contributed to a nitrate increase of about 30 mg NO3 l−1 on grassland. As grazing management and intensity is already strictly optimized in order to restrict nitrate leaching, this result underpins the need to develop sustainable grazing methods on soil that is susceptible to nitrate leaching.  相似文献   

4.
Winter oilseed rape (OSR) demands high levels of N fertilizer, often exceeding 200 kg N ha−1. Large amounts of residual soil mineral nitrogen (SMN) after harvest are regularly observed, and therefore N leaching during the percolation period over winter is increased. In this study agronomic strategies (fertilization level, crop rotation, tillage intensity) to control nitrate leaching after OSR were investigated by combining field measurements (soil mineral nitrogen, soil water content, crop N uptake) of a 2-year trial and another 5-year field trial with simulation modeling. The crop-soil model uses a daily time step and was built from existing and partly refined submodels for soil water dynamics, mineralization processes, and N uptake. It was used to reproduce the complex processes of the N dynamics and to calculate N concentration in the leachate and total volume of percolation water. Some parameters values were thereby newly identified based on the agreement between measured data and model results. Although SMN in the 60–90 cm layer was overestimated, the model could reproduce the measured data with an acceptable degree of accuracy. Overfertilization of OSR increased N leaching and therefore the precise calculation of N fertilizer doses is a first step towards prevent N leaching. Compared to ploughing, minimum tillage decreased N leaching when winter wheat was grown as the subsequent crop. Volunteer OSR and Phacelia tanacetifolia were grown as catch crops after OSR harvest. N leaching could be decreased especially when Phacelia was grown, but nitrate concentrations in the drainage water were higher and exceeded the European Union (EU) threshold for drinking water when volunteer OSR was grown. The results of this study provide strong evidence that reduced tillage or growing of noncruciferous catch crops decrease N leaching and may be used as an agricultural measure to prevent N pollution.  相似文献   

5.
A large amount of nitrogen (N) fertilizers applied to the winter wheat–summer maize double cropping systems in the North China Plain (NCP) contributes largely to N leaching to the groundwater. A series of field experiments were carried out during October 2004 and September 2007 in a lysimeter field to reveal the temporal changes of N leaching losses below 2-m depth from this land system as well as the effects of N fertilizer application rates on N leaching. Four N rates (0, 180, 260, and 360 kg N ha−1 as urea) were applied in the study area. Seasonal leachate volumes were 87 and 72 mm in the first and second maize season, respectively, and 13 and 4 mm during the winter wheat and maize season in the third rotational year, respectively. The average seasonal flow-weighted NO3-N concentrations in leachate for the four N fertilizer application rates ranged from 8.1 to 103.7 mg N l−1, and seasonal flow-weighted dissolved organic nitrogen (DON) concentrations in leachate varied from 0.8 to 6.0 mg N l−1. Total amounts of NO3-N leaching lost throughout the 3 years were in the range of 14.6 to 177.8 kg ha−1 for the four N application rates, corresponding to N leaching losses in the range of 4.0–7.6% of the fertilizers applied. DON losses throughout the 3 years were 1.4, 2.1, 3.6, and 6.3 kg N ha−1 for the four corresponding fertilization rates. The application rate of 180 kg N ha−1 was recommended based on the balance between reducing N leaching and maintaining crop yields. The results indicated that there is a potential risk of N leaching during the winter wheat season, and over-fertilization of chemical N can result in substantial N leaching losses by high-intensity rainfalls in summer.  相似文献   

6.
The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape: Brassica napus ssp. oleifera (Metzg.) Sinksk). For this purpose, ceramic suction cups were used, installed at 80 cm below the soil surface. Soil water samples were extracted at intervals of ca 14 days over the course of three leaching seasons (September – February) in 1992–1995 on sandy soil in a crop rotation comprising potato (Solanum tuberosum L.), spring wheat (Triticum aestivum L.), sugar beet (Beta vulgaris L.) and oats (Avena sativa L.). Nitrate-N concentration was determined in the soil water samples. In a selection of samples several cations and anions were determined in order to analyze which cations primarily leach in combination with nitrate. The water flux at 80 cm depth was calculated with the SWAP model. Nitrate-N loss per interval was obtained by multiplying the measured nitrate-N concentration and the calculated flux. Accumulation over the season yielded the total nitrate-N leaching and the seasonal flux-weighted nitrate-N concentration in leachate. Among the cases studied, the total leaching of nitrate-N ranged between 30 and 140 kg ha–1. Over the leaching season, the flux-weighted nitrate-N concentration ranged between 5 and 25 mg L–1. Without catch crop cultivation, that concentration exceeded the EU nitrate-N standard (11.3 mg L–1) in all cases. Averaged for the current rotation, cultivation of catch crops would result in average nitrate-N concentrations in leachate near or below the EU nitrate standard. Nitrate-N concentrations correlated with calcium concentration and to a lesser extent with magnesium and potassium, indicating that these three ion species primarily leach in combination with nitrate. It is concluded that systematic inclusion of catch crops helps to decrease the nitrate-N concentration in leachate to values near or below the EU standard in arable rotations on sandy soils.  相似文献   

7.
We applied a mechanistic ecosystem model to investigate the production and environmental performances of (1) current agricultural practice on two fields of a stockless organic cereal farm in southeast Norway and (2) alternative cereal-ley rotations and plowing time scenarios. Scenarios were simulated using historic weather data and a climate change scenario. Measured and simulated soil mineral N concentrations were generally low (1–4 g N m−2) and in good agreement. Simulated nitrate leaching was similar for the two fields, except when an extended period of black fallow weeding was practiced on one of them. Scenario simulations indicated that continuous cereal cropping undersown with a clover–grass winter cover crop performed best when evaluated by whole-rotation grain yield, the N yield/input-, and N loss/yield-ratios, and greenhouse gas emissions. However, the rotation had the largest soil organic matter losses. The N use and loss efficiency indicators were especially poor when ley years occurred consecutively and under fall plowing. Total greenhouse gas emissions were, however, smaller for the fall-plowed scenarios. In conclusion, our results indicated a modest potential for improving stockless systems by management changes in plowing time or crop rotation, which was hardly different in the climate change scenarios, although nitrate leaching increased substantially in the winter. Alternative strategies seem necessary to substantially improve the N-use efficiency in stockless organic grain production systems, e.g., biogas production from green manure and subsequent recycling of the digestate. Abandoning the stockless system and reintegrating livestock should also be considered.  相似文献   

8.
The incorporation of legume cover crops into annual grain rotations remains limited, despite extensive evidence that they can reduce negative environmental impacts of agroecosystems while maintaining crop yields. Diversified grain rotations that include a winter cereal have a unique niche for interseeding cover crops. To understand how management-driven soil fertility differences and inter-seeding with grains influenced red clover (Trifolium pratense) N2 fixation, we estimated biological N2 fixation (BNF) in 2006 and 2007, using the 15N natural abundance method across 15 farm fields characterized based on the reliance on BNF derived N inputs as a fraction of total N inputs. Plant treatments included winter grain with and without interseeded red clover, monoculture clover, monoculture orchardgrass (Dactylis glomerata), and clover-orchardgrass mixtures. Fields with a history of legume-based management had larger labile soil nitrogen pools and lower soil P levels. Orchardgrass biomass was positively correlated with the management-induced N fertility gradient, but we did not detect any relationship between soil N availability and clover N2 fixation. Interseeding clover with a winter cereal did not alter winter grain yield, however, clover production was lower during the establishment year when interseeded with taller winter grain varieties, most likely due to competition for light. Interseeding clover increased the % N from fixation relative to the monoculture clover (72% vs. 63%, respectively) and the average total N2 fixed at the end of the first growing season (57 vs. 47 kg N ha−1, respectively). Similar principles could be applied to develop more cash crop-cover crop complementary pairings that provide both an annual grain harvest and legume cover crop benefits.  相似文献   

9.
Greenhouse vegetable cultivation has greatly increased productivity but has also led to a rapid accumulation of nitrate in soils and probably in plants. Significant losses of nitrate–nitrogen (NO3-N) could occur after heavy N fertilization under open-field conditions combined with high precipitation in the summer. It is urgently needed to improve N management under the wide spread greenhouse vegetable production system. The objective of this study was to evaluate the effects of a summer catch crop and reduced N application rates on N leaching and vegetable crop yields. During a 2-year period, sweet corn as an N catch crop was planted between vegetable crops in the summer season under 5 N fertilizer treatments (0, 348, 522, 696, and 870 kg ha−1) in greenhouse vegetable production systems in Tai Lake region, southern China. A water collection system was installed at a depth of 0.5 m in the soil to collect leachates during the vegetable growing season. The sweet corn as a catch crop reduced the total N concentration from 94 to 59 mg l−1 in leached water and reduced the average soil nitrate N from 306 to 195 mg kg−1 in the top 0.1-m soil during the fallow period of local farmers’ N application rate (870 kg ha−1). Reducing the amount of N fertilizer and using catch crop during summer fallow season reduced total N leaching loss by 50 and 73%, respectively, without any negative effect on vegetable yields.  相似文献   

10.
Under semiarid conditions the response of crops to synthetic fertilizers is often reduced. Organic fertilizers can be used to provide a continuous source of nutrients for the crops. The soil nitrogen and crop yield in a rotation of durum wheat (Triticum durum)–fallow-barley (Hordeum vulgare)–vetch (Vicia sativa) were studied during 4 years when synthetic fertilizer (chemical), compost (organic) or no fertilizer (control) were applied in a field with high initial contents of soil NO3–N (> 400 kg N ha−1), phosphorus (22 mg kg−1) and potassium (> 300 mg kg−1). Changes in soil organic matter, phosphorus and potassium were also measured. During the crop period, chemical fertilization significantly increased the content of soil NO3–N in the first 0.30 m of soil with respect to organic fertilization and the control. The yield of wheat and barley was not increased after applying chemical or organic fertilizer with respect to the unfertilized plots. The estimated losses of nitrogen were similar for the three types of fertilization, as well as the uptake of nitrogen for the total biomass produced. The initial levels of organic matter and phosphorus were maintained, even in the plots that were not fertilized, while the potassium decreased slightly. Thus, the rotation and burying of crop residues were enough to maintain the crop yield and the initial content of nutrients.  相似文献   

11.
Precise estimation of soil nitrogen (N) supply to corn (Zea mays L.) through N mineralization plays a key role in implementing N best management practices for economic consideration and environmental sustainability. To quantify soil N availability to corn during growing seasons, a series of in situ incubation experiments using the method of polyvinyl chloride tube attached with resin bag at the bottom were conducted on two typical agricultural soils in a cool and humid region of eastern Canada. Soil filled tubes were retrieved at 10-d intervals within 2 months after planting, and at 3- to 4-week intervals thereafter until corn harvest. Ammonium and nitrate in the soil and resin part of the incubation tubes were analyzed. In general, there was minimal NH4+-N with ranges from 1.5 to 7.3 kg N ha−1, which was declined in the first 30 d and fluctuated thereafter. Nitrate, the main form of mineral N, ranged from 20 to 157 kg N ha−1. In the first 20–50 d, main portion of the NO3-N was in the soil and thereafter in the resin, reflecting the movement of NO3 in the soil, which was affected by rainfall events and amount. Total mineralized N was affected by soil total N and weather conditions: There was more total mineralized N in the soil with higher total N, and rainy weather stimulated N mineralization. The relationship between the accumulated mineral N and accumulated growing degree-days (GDD) fitted well into first order kinetic models. The accumulated mineralized soil N during corn growing season ranged from 96 to 120 kg N ha−1, which accounted for 2–3% of soil total N. Corn plants took up 110–137 kg N ha−1. While the mineralized N and crop uptake were in the same magnitude, a quantitative relationship between them could not be established in this study.  相似文献   

12.
The effects of conservation tillage, crop residue and cropping systems on the changes in soil organic matter (SOM) and overall maize–legume production were investigated in western Kenya. The experiment was a split-split plot design with three replicates with crop residue management as main plots, cropping systems as sub-plots and nutrient levels as sub-sub plots. Nitrogen was applied in each treatment at two rates (0 and 60 kg N ha−1). Phosphorus was applied at 60 kg P/ha in all plots except two intercropped plots. Inorganic fertilizer (N and P) showed significant effects on yields with plots receiving 60 kg P ha−1 + 60 kg N ha−1 giving higher yields of 5.23 t ha−1 compared to control plots whose yields were as low as 1.8 t ha−1 during the third season. Crop residues had an additive effect on crop production, soil organic carbon and soil total nitrogen. Crop rotation gave higher yields hence an attractive option to farmers. Long-term studies are needed to show the effects of crop residue, cropping systems and nutrient input on sustainability of SOM and crop productivity.  相似文献   

13.
The effect of sole and intercropping of field pea (Pisumsativum L.) and spring barley (Hordeum vulgareL.) and of crop residue management on crop yield,NO3 leaching and N balance in the cropping systemwas tested in a 2-year lysimeter experiment on a temperate sandy loam soil. Thecrop rotation was pea and barley sole and intercrops followed by winter-rye anda fallow period. The Land Equivalent Ratio (LER), which is defined as therelative land area under sole crops that is required to produce the yieldsachieved in intercropping, was used to compare intercropping performancerelative to sole cropping. Crops received no fertilizer in the experimentalperiod. Natural 15N abundance techniques were used to determine peaN2 fixation. The pea–barley intercrop yielded 4.0 Mg grainha–1, which was about 0.5 Mg lowerthan theyields of sole cropped pea but about 1.5 Mg greater than harvestedin sole cropped barley. Calculation of the LER showed thatplant growth resources were used from 17 to 31% more efficiently by theintercrop than by the sole crops. Pea increased the N derived fromN2fixation from 70% when sole cropped to 99% of the total aboveground Naccumulation when intercropped. However, based upon aboveground N accumulationthe pea–barley intercrop yielded about 85 kg Nha–1, which was about 65 kg lower thansolecropped pea but about three times greater than harvested in sole croppedbarley.Despite different preceding crops and removal or incorporation of straw, therewas no significant difference between the subsequent non-fertilized winter-ryegrain yields averaging 2.8 Mg ha–1, indicating anequalization of the quality of incorporated residue by theNO3 leaching pattern.NO3 leaching throughout the experimental periodwas61 to 76 kg N ha–1. Leaching dynamics indicateddifferences in the temporal N mineralization comparing lysimeters previouslycropped with pea or with barley. The major part of this N was leached duringautumn and winter. Leaching tended to be smaller in the lysimeters originallycropped with the pea–barley intercrops, although not significantly differentfromthe sole cropped pea and barley lysimeters. Soil N balances indicated depletionof N in the soil–plant system during the experimental period, independent ofcropping system and residue management. N complementarity in the croppingsystemand the synchrony between residual N availability and crop N uptake isdiscussed.  相似文献   

14.
Sustainable soil fertility management depends on long-term integrated strategies that build and maintain soil organic matter and mineralizable soil N levels. These strategies increase the portion of crop N needs met by soil N and reduce dependence on external N inputs required for crop production. To better understand the impact of management on soil N dynamics, we conducted field and laboratory research on five diverse management systems at a long-term study in Maryland, the USDA- Agricultural Research Service Beltsville Farming Systems Project (FSP). The FSP is comprised of a conventional no-till corn (Zea mays L.)–soybean (Glycine max L.)–wheat (Triticum aestivum L.)/double-crop soybean rotation (NT), a conventional chisel-till corn–soybean–wheat/soybean rotation (CT), a 2 year organic corn–soybean rotation (Org2), a 3 year organic corn–soybean–wheat rotation (Org3), and a 6 year organic corn–soybean–wheat–alfalfa (Medicago sativa L.) (3 years) rotation (Org6). We found that total potentially mineralizable N in organic systems (average 315 kg N ha−1) was significantly greater than the conventional systems (average 235 kg N ha−1). Particulate organic matter (POM)–C and –N also tended to be greater in organic than conventional cropping systems. Average corn yield and N uptake from unamended (minus N) field microplots were 40 and 48%, respectively, greater in organic than conventional grain cropping systems. Among the three organic systems, all measures of N availability tended to increase with increasing frequency of manure application and crop rotation length (Org2 < Org3 ≤ Org6) while most measures were similar between NT and CT. Our results demonstrate that organic soil fertility management increases soil N availability by increasing labile soil organic matter. Relatively high levels of mineralizable soil N must be considered when developing soil fertility management plans for organic systems.  相似文献   

15.
Long-term use of soil, crop residue and fertilizer management practices may affect some soil properties, but the magnitude of change depends on soil type and climatic conditions. Two field experiments with barley, wheat, or canola in a rotation on Gray Luvisol (Typic Cryoboralf) loam at Breton and Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, were conducted to determine the effects of 19 or 27 years (from 1980 to 1998 or 2006 growing seasons) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha−1 in SRet, and 0 kg N ha−1 in SRem plots) on pH, extractable P, ammonium-N and nitrate–N in the 0–7.5, 7.5–15, 15–30 and 30–40 cm or 0–15, 15–30, 30–60, 60–90 and 90–120 cm soil layers. The effects of tillage, crop residue management and N fertilization on these chemical properties were usually similar for both contrasting soil types. There was no effect of tillage and residue management on soil pH, but application of N fertilizer reduced pH significantly (by up to 0.5 units) in the top 15 cm soil layers. Extractable P in the 0–15 cm soil layer was higher or tended to be higher under ZT than CT, or with SRet than SRem in many cases, but it decreased significantly with N application (by 18.5 kg P ha−1 in Gray Luvisol soil and 20.5 kg P ha−1 in Black Chernozem soil in 2007). Residual nitrate–N (though quite low in the Gray Luvisol soil in 1998) increased with application of N (by 17.8 kg N ha−1 in the 0–120 cm layer in Gray Luvisol soil and 23.8 kg N ha−1 in 0–90 cm layer in Black Chernozem soil in 2007) and also indicated some downward movement in the soil profile up to 90 cm depth. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, elimination of tillage and retention of straw increased but N fertilization decreased extractable P in the surface soil. Application of N fertilizer reduced pH in the surface soil, and showed accumulation and downward leaching of nitrate–N in the soil profile.  相似文献   

16.
Lack of local data limits estimation of nitrous oxide (N2O) emissions from different land uses of Uruguay. As a first step towards obtaining local information, we measured from August 2003 to September 2004 N2O fluxes from a rotation-by-tillage experiment established in 1993 and from a nearby natural pasture (NP). Nitrous oxide emission rates were measured on an event-driven basis by using the closed chamber technique with six replicates per treatment. Fluxes varied considerably with time and the higher rates (more than 30 g N ha−1 day−1) were generally associated with periods of high soil water content, high temperature, and/or decreasing soil nitrate. We could not identify, however, any statistically significant correlation between flux and these variables. Throughout the evaluation period, fluxes from crops or cultivated pastures tended to be higher than those from NP, but the effects of tillage (no-till and conventional tillage) or rotation (continuous tillage and rotation with pasture) were not consistent. The application of 112 kg N ha−1 to barley did not increase N2O fluxes probably due to a high fertilizer use efficiency caused by the recommended three-split application and by the lack of rain during this period. The annual cumulative flows of different treatments compared well with those estimated using IPCC methodology, but the high spatial and temporal variability observed in this one-year study indicate that further research is needed to obtain reliable data on N2O fluxes from agricultural soils of Uruguay.  相似文献   

17.

Recent interests in improving agricultural production while minimizing environmental footprints emphasized the need for research on management strategies that reduce nitrous oxide (N2O) emissions and increase nitrogen-use efficiency (NUE) of cropping systems. This study aimed to evaluate N2O emissions, annualized crop grain yield, emission factor, and yield-scaled- and NUE-scaled N2O emissions under continuous spring wheat (Triticum aestivum L.) (CW) and spring wheat–pea (Pisum sativum L.) (WP) rotations with four N fertilization rates (0, 50, 100, and 150 kg N ha?1). The N2O fluxes peaked immediately after N fertilization, intense precipitation, and snowmelt, which accounted for 75–85% of the total annual flux. Cumulative N2O flux usually increased with increased N fertilization rate in all crop rotations and years. Annualized crop yield and NUE were greater in WP than CW for 0 kg N ha?1 in all years, but the trend reversed with 100 kg N ha?1 in 2013 and 2015. Crop yield maximized at 100 kg N ha?1, but NUE declined linearly with increased N fertilization rate in all crop rotations and years. As N fertilization rate increased, N fertilizer-scaled N2O flux decreased, but NUE-scaled N2O flux increased non-linearly in all years, regardless of crop rotations. The yield-scaled N2O flux decreased from 0 to 50 kg N ha?1 and then increased with increased N fertilization rate. Because of non-significant difference of N2O fluxes between 50 and 100 kg N ha?1, but increased crop yield, N2O emissions can be minimized while dryland crop yields and NUE can be optimized with 100 kg N ha?1, regardless of crop rotations.

  相似文献   

18.
Oxidation of pyrite by nitrate (autotrophic denitrification) was identified as the main cause for sulfate increase in drinking water wells in an agriculturally used watershed, located in the north of Lower Saxony (Germany). Nitrate, which inducts this microbial catalyzed process, is drained into ground water predominantly from agricultural fertilization. The increase of sulfate in the ground water can only be stopped by reducing nitrate leaching into the ground water. To analyze the negative influence of agricultural fertilization on the quality of ground water different fertilization strategies were deducted for an investigated area of 890 ha. Calculated on the basis of nutrient balance of soil surface, the current average nitrogen balance in the investigated area amounts to 91 kg N ha-1 a−1. Farm-gate balance of nutrients is a strong indicator for assessing potential nutrient losses caused by leaching. This indicator shows comparable accuracy to the calculated nutrient balance of soil surface which demands, however, much more data input for calculations. Nitrate concentrations in seepage water in 2 m depth layer of the soil from agricultural fields were simulated with the model HERMES for the whole investigated area (agricultural land + forest). The nitrate concentration in seepage water was calculated for the whole area on the basis of farm-gate nutrient balance as an annual average, which amounts to 14.0 mg NO3–N l−1 (62 mg NO3 l−1). In order to keep the nitrate concentration of the ground water below the threshold value for drinking water (EU-water directive: 11.3 mg NO3–N l−1 (50 mg NO3 l−1) and to limit pyrite oxidation, different scenarios with simulation studies to optimize fertilization measures were developed. Only those scenarios which assured reduction of an average nitrate concentration in the drainage water below 11.3 mg NO3–N l−1 (50 mg NO3 l−1) without profit cuts for the farms were analyzed.
Janusz OlejnikEmail:
  相似文献   

19.
There is not sufficient knowledge concerning the risks involved in NO3–N leaching in relation to the use of cover crops and mulches. A 2 year field experiment was carried out in a pepper (Capsicum annuum L.) crop transplanted into different soil management treatments which involved the addition of mulch of three different types of winter cover crops (CC) [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterraneum L.), and a mixture of hairy vetch/oat (Avena sativa L.)], and an un-mulched plot. At the time of CC conversion into mulch, the hairy vetch/oat mixture accumulated the highest aboveground biomass (5.30 t ha−1 of DM), while hairy vetch in pure stand accumulated the highest quantity of N (177 kg ha−1) and showed the lowest C/N ratio (12). The marketable pepper yield was higher in mulched than in conventional (on average 33.5, 28.9, 27.7 and 22.2 t ha−1 of FM for hairy vetch, subclover, hairy vetch/oat mixture, and conventional, respectively). Generally, the NO3–N content of the soil was minimum at CC sowing, slightly higher at pepper transplanting and maximum at pepper harvesting (on average 15.2, 16.8, and 23.3 mg NO3-N kg−1 of dry soil, respectively). The cumulative leachate was higher during the CC period (from October to April) than the pepper crop period (from April to September), on average 102.1 vs 66.1 mm over the years, respectively. The cumulative NO3–N leached greatly depended on the type of mulch and it was 102.3, 95.3, 94.7, and 48.2 kg ha−1 in hairy vetch, subclover, hairy vetch/oat mixture, and conventional, respectively. A positive linear correlation was found between the N accumulated in the CC aboveground biomass and the NO3–N leached during pepper cultivation (R 2 = 0.87). This research shows that winter legume cover crops, especially hairy vetch in pure stand, converted into dead mulch in spring could be used successfully for adding N to the soil and increasing the yield of the following pepper crop although the risks of N losses via leaching could be increased compared to an un-mulched soil. Therefore when leguminous mulches are used in the cultivation of a summer crop, appropriate management practices of the system, such as a better control of the amount of irrigation water and the cultivation of a graminaceous or a cruciferous catch crop after the harvesting of the summer crop, should be adopted in order to avoid an increase in NO3–N leaching.  相似文献   

20.
Coupling winter small grain cover crops (CC) with manure (M) application may increase retention of manure nitrogen (N) in corn (Zea mays L.), -soybean [Glycine max (L.) Merr], cropping systems. The objective of this research was to quantify soil N changes after application of liquid swine M (Sus scrofa L.) at target N rates of 112, 224, and 336 kg N ha−1 with and without a CC. A winter rye (Secale cereale L.)-oat (Avena sativa L.) CC was established prior to fall M injection. Surface soil (0–20 cm) inorganic N concentrations were quantified every week for up to 6 weeks after M application in 2005 and 2006. Soil profile (0–120 cm in 5, 20-cm depth increments) inorganic N, total N, total organic carbon and bulk density were quantified for each depth increment in the fall before M application and before the CC was killed the following spring. Surface soil inorganic N on the day of application averaged 318 \textmg  \textN  \textkg - 1\textsoil 318\,{\text{mg}}\;{\text{N}}\;{\text{kg}}^{ - 1}{_{\text{soil}}} in 2005 and 186 \textmg  \textN  \textkg - 1\textsoil 186\,{\text{mg}}\;{\text{N}}\;{\text{kg}}^{ - 1}{_{\text{soil}} } in 2006 and stabilized at 150 \textmg  \textN  \textkg - 1\textsoil 150\,{\text{mg}}\;{\text{N}}\;{\text{kg}}^{ - 1}{_{\text{soil}}} in both years by mid-November. Surface soil NO3-N concentrations in the M band were more than 30 times higher in the fall of 2005 than in 2006. The CC reduced surface soil NO3-N concentrations after manure application by 32% and 67% in mid- November 2005 and 2006, respectively. Manure applied at 224 kg N ha−1 without a CC had significantly more soil profile inorganic-N (480 kg N ha−1) in the spring after M application than manured soils with a CC for the 112 (298 kg N ha−1) and 224 (281 kg N ha−1) N rates, and equivalent inorganic N to the 336 (433 kg N ha−1) N rate. These results quantify the potential for cover crops to enhance manure N retention and reduce N leaching potential in farming systems utilizing manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号