首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epitaxial growth of a highly strained, coherent SiGe alloy shell around a Ge nanowire core is investigated as a method to achieve surface passivation and carrier confinement, important in realizing nanowire devices. The high photoluminescence intensity observed from the core-shell nanowires with spectral features similar to that of bulk Ge indicates effective surface passivation. Thermal stability of these core-shell heterostructures has been systematically investigated, with a method demonstrated to avoid misfit strain relaxation during postgrowth annealing.  相似文献   

2.
C.B. Li  K. Usami  H. Mizuta  S. Oda 《Thin solid films》2011,519(13):4174-4176
The growth of Ge-Si and Ge-Si nanowire (NW) heterostructures was demonstrated via chemical vapor deposition. Due to the influence of interface energy, differing topographies of the heterostructures were observed. On initially grown Ge NWs, numerous Si NW branches were grown near the tip due to Au migration. However, on initially grown Si NWs, high-density Ge nanodots were observed.  相似文献   

3.
Si0.48Ge0.52/Si tip/nanowire heterostructures were grown by pulsed laser vaporization (PLV) at a growth temperature of 1100 degrees C. Ge diffusion in [111]-growth Si nanowires was studied for different post-synthesis annealing temperatures from 200 degrees C to 800 degrees C. Ge composition profiles were quantified by energy-dispersive X-ray spectroscopy in a transmission electron microscope. The compositional profiles were modeled by a limited-source diffusion model to extract temperature-dependent diffusion coefficients. The Ge diffusion coefficients followed an Arrhenius relationship with an activation energy of 0.622 +/- 0.050 eV. This rather low activation energy barrier is similar to the previously reported activation energy barrier of 0.67 eV for Ge surface diffusion on Si, suggesting that surface diffusion may dominate in nanowires at this length scale.  相似文献   

4.
Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical,electrical,and thermophysical applications.Additionally,the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties.In this highlight article,we review our recent progress and understanding in the deliberate induction of imperfections,in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities.The role of catalysts and catalyst-nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored.Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation."Epitaxial defect transfer"process and catalyst-nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis.By inducing and manipulating twin boundaries in the metal catalysts,twin formation and density are controlled in Ge nanowires.The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries.Additionally,metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires.Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth,where the impurity Sn atoms become trapped with the deposition of successive layers,thus giving an extraordinary Sn content (>6 at.%) in Ge nanowires.A larger amount of Sn impingement (>9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.  相似文献   

5.
Diameter-dependent compositions of Si(1-x)Ge(x) nanowires grown by a vapor-liquid-solid mechanism using SiH(4) and GeH(4) precursors are studied by transmission electron microscopy and X-ray energy dispersive spectroscopy. For the growth conditions studied, the Ge concentration in Si(1-x)Ge(x) nanowires shows a strong dependence on nanowire diameter, with the Ge concentration decreasing with decreasing nanowire diameter below approximately 50 nm. The size-dependent nature of Ge concentration in Si(1-x)Ge(x) NWs is strongly suggestive of Gibbs-Thomson effects and highlights another important phenomenon in nanowire growth.  相似文献   

6.
Self-assembled nanowires offer the prospect of accurate and scalable device engineering at an atomistic scale for applications in electronics, photonics and biology. However, deterministic nanowire growth and the control of dopant profiles and heterostructures are limited by an incomplete understanding of the role of commonly used catalysts and specifically of their interface dynamics. Although catalytic chemical vapour deposition of nanowires below the eutectic temperature has been demonstrated in many semiconductor-catalyst systems, growth from solid catalysts is still disputed and the overall mechanism is largely unresolved. Here, we present a video-rate environmental transmission electron microscopy study of Si nanowire formation from Pd silicide crystals under disilane exposure. A Si crystal nucleus forms by phase separation, as observed for the liquid Au-Si system, which we use as a comparative benchmark. The dominant coherent Pd silicide/Si growth interface subsequently advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd and Si diffusion. Our results establish an atomistic framework for nanowire assembly from solid catalysts, relevant also to their contact formation.  相似文献   

7.
Vapour‐liquid‐solid (VLS) techniques are popular routes for the scalable synthesis of semiconductor nanowires. In this article, in‐situ electron microscopy is used to correlate the equilibrium content of ternary (Au0.75Ag0.25–Ge and Au0.65Ag0.35–Ge) metastable alloys with the kinetics, thermodynamics and diameter of Ge nanowires grown via a VLS mechanism. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires varies as a function of nanowire diameter and eutectic alloy composition. The behaviour of the faceted heterogeneous liquid–solid interface correlates with the growth kinetics of the nanowires, where the main growth facet at the solid nanowire–liquid catalyst drop contact line lengthens for faster nanowire growth kinetics. Pronounced diameter dependent growth kinetics, as inferred from liquid–solid interfacial behaviour, is apparent for the synthesised nanowires. Direct in‐situ microscopy observations facilitates the comparison between the nanowire growth behaviour from ternary (Au–Ag–Ge) and binary (Au–Ge) eutectic systems.  相似文献   

8.
Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions. For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors and low-temperature quantum devices compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have an unusually high thermoelectric figure of merit. Here, we report the first multi-quantum-well (MQW) core/shell nanowire heterostructures based on well-defined III-nitride materials that enable lasing over a broad range of wavelengths at room temperature. Transmission electron microscopy studies show that the triangular GaN nanowire cores enable epitaxial and dislocation-free growth of highly uniform (InGaN/GaN)n quantum wells with n=3, 13 and 26 and InGaN well thicknesses of 1-3 nm. Optical excitation of individual MQW nanowire structures yielded lasing with InGaN quantum-well composition-dependent emission from 365 to 494 nm, and threshold dependent on quantum well number, n. Our work demonstrates a new level of complexity in nanowire structures, which potentially can yield free-standing injection nanolasers.  相似文献   

9.
Li Y  Xiang J  Qian F  Gradecak S  Wu Y  Yan H  Blom DA  Lieber CM 《Nano letters》2006,6(7):1468-1473
We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire heterostructures and their implementation as high electron mobility transistors (HEMTs). The radial nanowire heterostructures were prepared by sequential shell growth immediately following nanowire elongation using metal-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/AlN/AlGaN radial nanowire heterostructures are dislocation-free single crystals. In addition, the thicknesses and compositions of the individual AlN and AlGaN shells were unambiguously identified using cross-sectional high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM). Transport measurements carried out on GaN/AlN/AlGaN and GaN nanowires prepared using similar conditions demonstrate the existence of electron gas in the undoped GaN/AlN/AlGaN nanowire heterostructures and also yield an intrinsic electron mobility of 3100 cm(2)/Vs and 21,000 cm(2)/Vs at room temperature and 5 K, respectively, for the heterostructure. Field-effect transistors fabricated with ZrO(2) dielectrics and metal top gates showed excellent gate coupling with near ideal subthreshold slopes of 68 mV/dec, an on/off current ratio of 10(7), and scaled on-current and transconductance values of 500 mA/mm and 420 mS/mm. The ability to control synthetically the electronic properties of nanowires using band structure design in III-nitride radial nanowire heterostructures opens up new opportunities for nanoelectronics and provides a new platform to study the physics of low-dimensional electron gases.  相似文献   

10.
The elastic and piezoelectric properties of zincblende and wurtzite crystalline InAs/InP nanowire heterostructures have been studied using electro‐elastically coupled continuum elasticity theory. A comprehensive comparison of strains, piezoelectric potentials and piezoelectric fields in the two crystal types of nanowire heterostructures is presented. For each crystal type, three different forms of heterostructures—core‐shell, axial superlattice, and quantum dot nanowire heterostructures—are considered. In the studied nanowire heterostructures, the principal strains are found to be insensitive to the change in the crystal structure. However, the shear strains in the zincblende and wurtzite nanowire heterostructures can be very different. All the studied nanowire heterostructures are found to exhibit a piezoelectric field along the nanowire axis. The piezoelectric field is in general much stronger in a wurtzite nanowire heterostructure than in its corresponding zincblende heterostructure. Our results are expected to be particularly important for analyzing and understanding the properties of epitaxially grown nanowire heterostructures and for applications in nanowire electronics, optoelectronics, and biochemical sensing.  相似文献   

11.
Silicon nanowires (NWs) and vertical nanowire-based Si/Ge heterostructures are expected to be building blocks for future devices, e.g. field-effect transistors or thermoelectric elements. In principle two approaches can be applied to synthesise these NWs: the ‘bottom-up’ and the ‘top-down’ approach. The most common method for the former is the vapour-liquid-solid (VLS) mechanism which can also be applied to grow NWs by molecular beam epitaxy (MBE). Although MBE allows a precise growth control under highly reproducible conditions, the general nature of the growth process via a eutectic droplet prevents the synthesis of heterostructures with sharp interfaces and high Ge concentrations. We compare the VLS NW growth with two different top-down methods: The first is a combination of colloidal lithography and metal-assisted wet chemical etching, which is an inexpensive and fast method and results in large arrays of homogenous Si NWs with adjustable diameters down to 50 nm. The second top-down method combines the growth of Si/Ge superlattices by MBE with electron beam lithography and reactive ion etching. Again, large and homogeneous arrays of NWs were created, this time with a diameter of 40 nm and the Si/Ge superlattice inside.  相似文献   

12.
Recent progress on the synthesis and characterization of semiconductor nanowire heterostructures is reviewed. We describe a general method for heterostructure synthesis based on chemical vapour deposition and the vapour-liquid-solid growth of crystalline semiconducting nanowires. We then examine examples of nanowire heterostructures for which physical properties have been measured, considering the effects of synthetic conditions on the heterointerfaces as well as the electrical and optical characterization measurements that reveal heterointerface formation and quality. Finally, we identify areas of technical and conceptual progress that can contribute to the development of functional nanowire heterostructures.  相似文献   

13.
The direct electrodeposition of crystalline germanium (Ge) nanowire film electrodes from an aqueous solution of dissolved GeO(2) using discrete 'flux' nanoparticles capable of dissolving Ge(s) has been demonstrated. Electrodeposition of Ge at inert electrode substrates decorated with small (<100 nm), discrete indium (In) nanoparticles resulted in crystalline Ge nanowire films with definable nanowire diameters and densities without the need for a physical or chemical template. The Ge nanowires exhibited strong polycrystalline character as-deposited, with approximate crystallite dimensions of 20 nm and a mixed orientation of the crystallites along the length of the nanowire. Energy dispersive spectroscopic elemental mapping of individual Ge nanowires showed that the In nanoparticles remained at the base of each nanowire, indicating good electrical communication between the Ge nanowire and the underlying conductive support. As-deposited Ge nanowire films prepared on Cu supports were used without further processing as Li(+) battery anodes. Cycling studies performed at 1 C (1624 mA g(-1)) indicated the native Ge nanowire films supported stable discharge capacities at the level of 973 mA h g(-1), higher than analogous Ge nanowire film electrodes prepared through an energy-intensive vapor-liquid-solid nanowire growth process. The cumulative data show that ec-LLS is a viable method for directly preparing a functional, high-activity nanomaterials-based device component. The work presented here is a step toward the realization of simple processes that make fully functional energy conversion/storage technologies based on crystalline inorganic semiconductors entirely through benchtop, aqueous chemistry and electrochemistry without time- or energy-intensive process steps.  相似文献   

14.
采用非平衡分子动力学方法模拟了Si纳米线、Ge纳米线、核-壳结构的Si/Ge纳米线及超晶格结构的Si/Ge纳米线的导热系数,给出了纳米线的温度与导热系数关系曲线,对比了几种纳米线导热特性的差异,研究结果表明,随着温度的升高,各纳米线的导热系数降低;相同温度下,纳米线导热系数的大小顺序为:核-壳结构的Si/Ge纳米线、超晶格结构的Si/Ge纳米线、Si纳米线、Ge纳米线。  相似文献   

15.
S Kwon  ZC Chen  JH Kim  J Xiang 《Nano letters》2012,12(9):4757-4762
Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.  相似文献   

16.
Zhao Y  Smith JT  Appenzeller J  Yang C 《Nano letters》2011,11(4):1406-1411
Appropriately controlling the properties of the Si shell in Ge/Si core/shell nanowires permits not only passivation of the Ge surface states, but also introduces new interface phenomena, thereby enabling novel nanoelectronics concepts. Here, we report a rational synthesis of Ge/Si core/shell nanowires with doped Si shells. We demonstrate that the morphology and thickness of Si shells can be controlled for different dopant types by tuning the growth parameters during synthesis. We also present distinctly different electrical characteristics that arise from nanowire field-effect transistors fabricated using the synthesized Ge/Si core/shell nanowires with different shell morphologies. Furthermore, a clear transition in the modification of device characteristics is observed for crystalline shell nanowires following removal of the shell using a unique trimming process of successive native oxide formation/etching. Our results demonstrate that the preferred transport path through the nanowire structure can be modulated by appropriately tuning the growth conditions.  相似文献   

17.
We report the growth of germanium nanowires (Ge NWs) with single-step temperature method via vapour-liquid-solid (VLS) mechanism in the low pressure chemical vapour deposition (CVD) reactor at 300 degrees C, 280 degrees C, and 260 degrees C. The catalyst used in our experiment was Au nanoparticles with equivalent thicknesses of 0.1 nm (average diameter approximately 3 nm), 0.3 nm (average diameter approximately 4 nm), 1 nm (average diameter approximately 6 nm), and 3 nm (average diameter approximately 14 nm). The Gibbs-Thomson effect was used to explain our experimental results. The Ge NWs grown at 300 degrees C tend to have tapered structure while the Ge NWs grown at 280 degrees C and 260 degrees C tend to have straight structure. Tapering was caused by the uncatalysed deposition of Ge atoms via CVD mechanism on the sidewalls of nanowire and significantly minimised at lower temperature. We observed that the growth at lower temperature yielded Ge NWs with smaller diameter and also observed that the diameter and length of Ge NWs increases with the size of Au nanoparticles for all growth temperatures. For the same size of Au nanoparticles, Ge NWs tend to be longer with a decrease in temperature. The Ge NWs grown at 260 degrees C from 0.1-nm-thick Au had diameter as small as approximately 3 nm, offering an opportunity to fabricate high-performance p-type ballistic Ge NW transistor, to realise nanowire solar cell with higher efficiency, and also to observe the quantum confinement effect.  相似文献   

18.
One of the main motivations for the great interest in semiconductor nanowires is the possibility of easily growing advanced heterostructures that might be difficult or even impossible to achieve in thin films. For III-V semiconductor nanowires, axial heterostructures with an interchange of the group III element typically grow straight in only one interface direction. In the case of InAs-GaAs heterostructures, straight nanowire growth has been demonstrated for growth of GaAs on top of InAs, but so far never in the other direction. In this article, we demonstrate the growth of straight axial heterostructures of InAs on top of GaAs. The heterostructure interface is sharp and we observe a dependence on growth parameters closely related to crystal structure as well as a diameter dependence on straight nanowire growth. The results are discussed by means of accurate first principles calculations of the interfacial energies. In addition, the role of the gold seed particle, the effect of its composition at different stages during growth, and its size are discussed in relation to the results observed.  相似文献   

19.
InAs/InP axial nanowire heterostructures were grown by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. The nanowire crystal structure and morphology were investigated by transmission electron microscopy for various growth conditions (temperature, growth rate, V/III flux ratio). Growth mechanisms were inferred from the InAs and InP segment lengths as a function of the nanowire diameter. Short InAs segment lengths were found to grow by depletion of In from the Au particle as well as by direct impingement, while longer segments of InAs and InP grew by diffusive transport of adatoms from the nanowire sidewalls. The present study offers a way to control the lengths of InAs quantum dots embedded in InP barriers.  相似文献   

20.
High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700?°C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500?°C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20?μm length on Au particles, an upper bound of 0.5?nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号