首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
《特殊钢》2017,(1)
生产试验钢种26CrMo4,30Mn5和30Mn6V的冶金流程为150 t EAF-LF-VD-Φ210~310 mm管坯连铸。从6炉钢使用原低碱度中间包覆盖剂和15炉高碱度覆盖剂(/%:9.2MgO,0.87Fe_2O_3,44.03CaO,7.53SiO_2,18.68Al_2O_3)冶炼的钢中夹杂物的分析结果表明,使用现有低碱度中间包覆盖剂钢中Al含量从VD弱搅结束后到中间包衰减5×10~(-6)~35×10~(-6),平均Al含量减少25×10~(-6),而使用碱度为6中间包覆盖剂衰减10×10~(-6)~20×10~(-6),使用原覆盖剂VD到中间包300 mm~2钢样上1~10μm夹杂物明显增多,10μm夹杂物减少,而使用碱度为6覆盖剂VD到中间包相同面积钢样上1~10μm夹杂物减少,10μm夹杂物明显减少,表明碱度为6的中间包覆盖剂比原覆盖剂更适合纯净钢生产。  相似文献   

2.
研究了钢中夹杂物粒径、分布状态与全氧的对应关系,并探讨了大颗粒夹杂物含量与试样中全氧波动的相关性,量化了全氧检测法对洁净度的评价,结果表明:(1)钢中单位体积内夹杂物数量随粒径增大呈指数下降,粒径小于10μm夹杂物占总夹杂物数量的95%以上,夹杂物在钢中分布的均匀性随夹杂物粒径增大而降低;(2)钢中粒径小于10μm夹杂物中含氧量与钢中平均全氧有很好对应关系,全氧可以反映钢中分布均匀的夹杂物水平;(3)钢中大颗粒夹杂物越多,同一试样中全氧多次检测结果的波动越大,全氧的波动可以反映钢中大颗粒夹杂物的含量.  相似文献   

3.
开发Bi易切削钢1215M(%:0.06C、0.04Si、1.25Mn、0.39S、0.17Bi)替代Pb易切削钢SUM24L。生产Bi易切削钢的流程为40t UHP EAF-40t LF(喂Bi线)-180 mm×180 mm连铸-连轧工艺。试验结果表明,Bi易切削钢1215MΦ9 mm盘条夹杂物分布均匀,Bi易切削钢1215M的切削性能优于SUM23HS含S易切削钢与SUM24L含Pb易切削钢相当。  相似文献   

4.
范新智 《特殊钢》2010,31(3):33-34
叙述太钢二炼钢厂90 t LF精炼0Cr18Ni9奥氏体不锈钢时对钢中夹杂物的控制效果。工艺实践表明,钢水经VOD后,钢中氧含量为(40~55)×10-6,再经LF喂铝线0.3~1.0 kg/t时,可使钢中氧含量进一步降至(24~35)×10-6,同时钢中夹杂物数量减少40%以上;接着喂0.9~1.5 kg/t硅钙线使钢中夹杂物变性成球状,同时通过200~600 L/min氩气搅拌10~20 min和50~150 L/min氩气搅拌15~20 min,使钢中夹杂物数量进一步减少50%以上,并去除了钢中尺寸为30μm以上的夹杂物。  相似文献   

5.
研究了钢中夹杂物粒径、分布状态与全氧的对应关系,并探讨了大颗粒夹杂物含量与试样中全氧波动的相关性,量化了全氧检测法对洁净度的评价,结果表明:(1)钢中单位体积内夹杂物数量随粒径增大呈指数下降,粒径小于10μm夹杂物占总夹杂物数量的95%以上,夹杂物在钢中分布的均匀性随夹杂物粒径增大而降低;(2)钢中粒径小于10μm夹杂物中含氧量与钢中平均全氧有很好对应关系,全氧可以反映钢中分布均匀的夹杂物水平;(3)钢中大颗粒夹杂物越多,同一试样中全氧多次检测结果的波动越大,全氧的波动可以反映钢中大颗粒夹杂物的含量.  相似文献   

6.
通过试验冶炼稀土钢,采用扫描电镜与能谱仪,结合热力学计算分析稀土钢中夹杂物的成分以及形貌、尺寸分布等特征,研究稀土钢中夹杂物成分演变机理和稀土添加量对夹杂物特征的影响规律,从而实现稀土钢中夹杂物的精确控制。研究结果表明:在1 873 K时,稀土钢中CeAlO_3和Ce_2O_2S夹杂物最为稳定。稀土钢中铈质量分数为0.015%时,冶炼过程中CeAlO_3+Ce_xS_y夹杂物逐渐转变为Ce_2O_3,且夹杂物中Al_2O_3质量分数和Ce_xS_y质量分数降低。稀土钢中铈质量分数为0.028%时,夹杂物主要为Ce_2O_2S。冶炼初期稀土氧化物较多,随着钢液中溶解氧质量分数的降低,过剩的稀土Ce与硫结合,使得稀土硫化物逐渐增多。增加钢液中的铈含量,CeAlO_3夹杂物减少,Ce_2O_2S增多。将铈含量从0.015%增加到0.028%时,夹杂物平均尺寸由2.83μm降低为2.66μm。  相似文献   

7.
通过10 kg感应炉研究了Ca-Si线与FeS加入次序对低碳结构钢(/%:0.16C,0.65Mn,0.25Si,0.034S,0.025P)硫化物形貌和切削性能的影响。以钢中非金属夹杂物变形处理为基础,采用Image Pro Plus软件对钢中夹杂物指标进行定量分析,得出采用先加入Ca-Si线后加FeS的合金化模式时,钢中夹杂物平均长度为12.3μm,单位面积上条状夹杂物与粒状夹杂物之比为64:41,而采用先加FeS后加Ca-Si线的合金化模式,钢中夹杂物平均长度为9.9μm,单位面积条状夹杂物与粒状夹杂物数量之比为52:53,且钢样的切削性能较先加Ca-Si线模式好,因此先加FeS后加Ca-Si线的合金化工艺有利于控制钢中硫化物形态。  相似文献   

8.
为开发含钛焊丝钢ER70S-G,对其冶炼过程中夹杂的数量、尺寸和类型进行研究。研究发现:在精炼过程中,钢中当量直径夹杂物的数目呈现逐渐降低的趋势;到中间包时,当量直径(5μm)夹杂物数目已经从包样的19.78个/mm2减少到1.66个/mm2;精炼过程夹杂物的平均直径呈逐渐降低的趋势,平均直径为2.05μm;精炼初期,钢中夹杂物类型主要是MnO-SiO_2夹杂,到加钛铁前,钢中的主要夹杂物转变为Ca O和Mg O,从加钛铁后到中间包期间,Al2O3-Ti_2O_3-Mg O系夹杂是钢中的主要夹杂物。  相似文献   

9.
 利用ASPEX全自动扫描电镜对X70管线钢RH真空处理过程的夹杂物形貌、成分、数量和尺寸进行了系统研究。结果表明,RH过程中夹杂物主要为液态球状含少量MgO的CaO-Al2O3系夹杂物。夹杂物随RH真空处理时间的增加而减少,RH处理28min后,钢液中夹杂物去除率达70%。除延长RH真空处理时间外,减少RH进站夹杂物可大幅降低RH终点夹杂物数量。总体夹杂物和1~5μm夹杂物数量随RH真空处理时间单调递减;对于大于5μm的夹杂物,其数量先增大后减少,而且随着夹杂物尺寸的增加,数量达到最大值所需真空处理时间增加。RH真空处理后,夹杂物平均尺寸有所增加,由2.2~2.5μm增加到3.0~3.9μm。  相似文献   

10.
26CrMoNbTiB钢由45 t EAF-LF(VD)-Φ80~180mm管坯HCC流程冶炼。该钢各工序的洁净度试验结果表明,LF-VD后钢中氧含量为(8~18)×10-6,平均夹杂物数量最低为2.31个/mm2,连铸坯平均夹杂物数量为3.66个/mm2,≥50μm大型夹杂物平均含量为4.08 mg/10 kg。加强钢包到中间包长水口的密封保护和采用钢包下渣检测装置,提高中间包容量和采用挡渣墙是进一步提高铸坯洁净度的关键工艺措施。  相似文献   

11.
试验研究了0.000 5%~0.001 2%Mg对60 kg真空感应炉熔炼的430铁素体不锈钢(/%:0.04C、0.25~0.32Si、0.28~0.38Mn、16.5~16.9Cr)夹杂物形成和凝固组织的影响。结果表明,430钢液中添加镁合金后,钢中形成平均粒径更小,数量密度更大的含MgO复合夹杂物;镁合金的加入可以改善430钢的凝固组织,且浇铸温度越低,改善效果越明显,在1 580℃浇铸时,等轴晶率由常规钢的30.8%提高至镁处理钢的88.5%,相应等轴晶尺寸由1 741.6μm降至945.3μm。含MgO夹杂物与δ相二维错配度极小,可作为430钢有效异质形核剂,促进等轴晶的形成,抑制柱状晶的生长,细化凝固组织。  相似文献   

12.
分析了改进前120 t LD-LF-RH-240 mm×240 mm CC工艺生产F45MnVS非调质钢中硫化物夹杂形貌、尺寸、数量密度等特性。通过采取以下改进措施:(1)转炉出钢过程脱氧铝锭加入用环绕钢液冲击区域分时段、分批次方式;(2)使用不含有MnS夹杂物的低碳低硫锰铁等合金辅料;(3)LF精炼过程S线喂入分批次加入等。试验结果表明:改进工艺后,LF、RH、中间包、铸坯以及轧材所有钢中硫化物夹杂的尺寸均有所降低,铸坯边缘、铸坯1/4处以及铸坯中心的大尺寸(>5μm)夹杂物数量密度分别由改进前的35、83、51个/mm2下降至改进后的24、57、39个/mm2,降幅分别达到31.43%、31.33%、23.53%。改进后轧材中细系和粗系夹杂物评级均有所改善,夹杂物长宽比为0~3的比例由改进前的63.07%增加至改进后71.23%。  相似文献   

13.
斯庭智 《特殊钢》2013,34(3):56-59
试验42CrMoTiB钢和稀土微合金化42CrMoTiBRE钢(/%:0.41~0.43C、0.36~0.38Si、0.59~0.72Mn、0.018~0.020P、0.005~0.010S、1.08~1.13Cr、0.16~0.19Mo、0.06~0.08Ti、0.003~0.004B、0~0.020Ce或Sm,0.001 3~0.001 5T[O])由150 kg真空感应炉冶炼,浇铸成平均断面尺寸165 mm×165 mm的钢锭,锻成120mm×120 mm钢坯。研究了Ce或Sm对42CrMoTiB钢锻坯夹杂物和力学性能的影响。结果表明,与未加稀土42CrMoTiB钢相比,加入0.18RE后(钢中RE含量0.019%~0.020%)42CrMoTiBRE钢中的夹杂物含量大幅降低,A类、B类和D类粗系夹杂级别分别由0.5、2.0和0.5降低至0、0~0.5和0,细系夹杂分别由0.5、1.5和2.0降低至0、1.0和1.0。加入RE改变了钢中夹杂物形貌,形成球形稀土硫氧化物;加稀土明显提高钢的塑性和韧性,与42CrMoTiB钢相比42CrMoTiBCe钢横向断面收缩率(Z)和夏比冲击功(AKV)分别由22%和17 J/cm2提高至30%和28 J/cm2。   相似文献   

14.
研究了Mg脱氧对于船板结构钢中微米级夹杂物演变行为的影响.钢中典型夹杂物是中心为氧化物、外围为MnS的复合夹杂物.随着钢中Mg含量的增高,独立氧化物和独立硫化物的数量减少,氧化物和硫化物的复合夹杂物数量增多,同时夹杂物的尺寸减小、数量增加.随着钢中Mg含量从0升高到27 ×10^-4%、38×10^-4%、99 ×10^-4%,夹杂物中心氧化物成分的变化趋势是:Al2O3→(Mg-Al-Ti-O)→MgO.  相似文献   

15.
通过理论分析、实验室验证、工业生产试验研究了炉气对304奥氏体不锈钢(/%:≤0.08C,18~20Cr,8.0~10.5Ni)连铸坯以及热轧板表面质量的影响。工业生产试验结果表明,加热炉中燃烧后炉气中水蒸气含量为19.5%时,加热后铸坯表面铁鳞厚且致密,除鳞后铁鳞残留明显,热轧后钢板色泽不均匀,局部粗糙度4.0μm;当炉气中水蒸气含量降至5.8%时,加热后铸坯表面铁鳞稀薄、疏松,除鳞后无肉眼可见铁鳞,热轧后色泽均匀,整体粗糙度3.0μm。因此为提高热轧板表面质量,应控制加热炉燃烧后炉气中的水蒸气含量。  相似文献   

16.
利用300 t钢包炉工业试验研究了不同夹杂物改质工艺(包括未改质、稀土处理和钙处理)对铝镇静高强度低合金钢夹杂物特征的影响.结果表明,未改质处理炉次钢板中夹杂物为高铝含量的Al-M g-Ca-O-S-M n复合夹杂物,夹杂数量密度最小(仅为7.4和9.5个/mm2),但夹杂物平均尺寸大于3μm,在轧板中检测到不小于20...  相似文献   

17.
150 t钢包炉(LF)精炼的钢种主要有汽车大梁钢、车轮钢等,其生产流程为150 t转炉-150 t LF-板坯连铸-连轧。通过150 t LF平均初渣碱度由3.4降至2.1,喂Ca线平均速度由4.0 m/s提高至4.7 m/s,改善了初渣流动性,吨钢Al用量降低0.15 kg,钙的收得率提高了17%;通过供电制度的优化,在加热期间降低电耗2.5k Wh/s,钢液升温速度可提高0.93℃/min。  相似文献   

18.
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO2,20~30Al2O3,∑(FeO+MnO)≤1%。分析了RH加钙(0.0013%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al2O3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显  相似文献   

19.
以950 kg/m H型连铸坯结晶器为研究对象,采用FLUENT软件建立三维几何模型,模拟研究了水口浸入深度125 mm和175 mm时拉速(0.6~1.2 m/s)对结晶器内钢液传递特性的影响。结果表明,不同拉速条件下H型坯结晶器内钢液流态相似,但随着拉速的增大,结晶器内钢液流股冲击深度增大和结晶器自由表面流速增大,保护渣熔化状况有改善趋势,同时结晶器液面波动和钢水对凝固坯壳的冲刷有增大趋势。而各粒径夹杂物上浮去除率随拉速的增大而降低,其中大颗粒夹杂物去除率降低显著,当拉速由0.6 m/min增至1.2 m/min时,100μm夹杂物的去除率由16%降至10%。该模拟条件下,20~100μm夹杂物去除率在4%~16%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号