首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
尖晶石锰酸锂的表面包覆改性研究   总被引:1,自引:0,他引:1  
采用溶胶凝胶法在尖晶石锰酸锂的表面包覆一层二氧化钛,并通过扫描电镜对包覆前后样品的粒径和形貌进行了表征。电化学测试结果表明:二氧化钛包覆层能有效减少锰酸锂和电解液的直接接触,减少锰的溶解,提高材料的电化学稳定性。当二氧化钛包覆量为2%(质量分数)时,样品具有最好的电化学性能,在55 ℃下1 C充放电循环首次放电比容量为111.4 mA·h/g,循环50次后仍具有101.5 mA·h/g的比容量。  相似文献   

2.
通过循环伏安(CV)、电化学交流阻抗谱(EIS)及恒流充放电研究锰酸锂表面的成膜性能及电化学性能。结果表明,锰酸锂表面的SEI膜在电池首次充电过程中就开始形成,充放电循环至3周时,SEI膜得到较大程度的修补和完善。但循环到一定次数后,SEI膜会逐渐变厚,直接影响电池的电化学性能。  相似文献   

3.
磷酸铁锂结构稳定、循环性能优异,但是随着主机厂家对质保要求的不断提升,磷酸铁锂仍面临着高温循环性能不能满足客户要求的情况。以磷酸铁锂正极锂离子电池为研究对象,分别对比了基础电解液体系和改善电解液体系[在基础电解液中添加二氟二草酸硼酸锂(LiODFB)]对电池高温循环性能的影响。对循环后的电池采用直流内阻(DCIR)、电化学交流阻抗谱(EIS)、d Q/d U(恒定的电压间隔内电池容量的变化)曲线等无损分析方式进行数据对比,结果表明改善电解液体系电池的电荷转移阻抗进一步降低。通过对电池进行解剖,对两种电解液体系的电池极片进行了厚度分析、X射线衍射(XRD)分析、扫描电镜(SEM)分析、电感耦合等离子体发射光谱(ICP)元素分析等,结果表明改善电解液体系的电池在抑制负极表面副反应、减少正极铁溶出方面具有明显的效果,因此电池的高温循环性能更好。  相似文献   

4.
锂离子电池正极材料锰酸锂的改性   总被引:1,自引:0,他引:1  
以镁-聚丙烯酸为原料,采用溶液法在尖晶石锰酸锂表面包覆一层均匀稳定的氧化镁层。用扫描电镜和俄歇能谱等测试技术对包覆前后锰酸锂的结构和性能进行了表征。结果表明,处理后在尖晶石锰酸锂表面形成了L iMn2-xMgxO4固溶液,此固溶液保护层减少了锰酸锂和电解液的直接接触,有效地抑制了锰酸锂与电解液的相互作用。经表面修饰处理后,锰酸锂正极材料的稳定性以及材料的电化学性能均得到明显提高。处理后锰酸锂所制电池经450次循环,容量衰减在20%左右。  相似文献   

5.
姚年春  何玉林 《化学试剂》2019,41(2):120-124
对尖晶石Li Mn2O4材料进行表面修饰能够在一定程度上减少电极材料和电解液的直接接触,抑制锰元素溶解。通过Pechini法制备了不同包覆量(1、1. 5和2 wt%)的锂镧锆氧固态电解质/锰酸锂复合材料。当包覆量为1. 5 wt%时,复合正极材料首次放电容量达到112. 5 m Ah/g,在55℃、0. 5 C循环100次后容量损失率仅为8. 6%。尖晶石晶粒表面形成了独特的网络状包覆层,减少了活性物质和有机电解液之间的直接接触却不影响锂离子扩散,显著提升了锰酸锂的高温电化学性能。  相似文献   

6.
随着新能源汽车产业的蓬勃发展,对高能量密度动力电池的需求日益迫切。开发高电压正极材料及其适配性电解液,成为下一代高能量密度动力电池的主要研究方向。镍锰酸锂(LiNi0.5Mn1.5O4)材料以其高电压(4.7 V,vs.Li/Li +)、高能量密度(达650 W·h/kg)、资源丰富且价格低廉而受到广泛关注。然而,镍锰酸锂材料在长期的充放电循环过程中,锰从电极材料中溶解,破坏了电极材料的结构,导致电池性能恶化。介绍了镍锰酸锂正极材料及其适配性电解液研究最新进展。指出离子掺杂、表面包覆、复合方法是改善镍锰酸锂电化学性能的有效途径。同时,通过引入成膜添加剂、改变锂盐的种类及浓度、调整主溶剂的种类及比例等方法,可以提高电解液的耐高压性能,提高镍锰酸锂电极与电解液的界面稳定性,也是提升镍锰酸锂电池性能的重要方法。最后提出,适用于锂离子电池的5 V高电压电解液的研发相对滞后,其是制约高电压电池体系应用的主要问题。  相似文献   

7.
为改善镍锰酸锂的电化学性能,以硝酸铟(In(NO3)3·H2O)为原料,通过高温固相法在镍锰酸锂电极材料表面包覆一层惰性氧化铟(In2O3),并研究不同In2O3包覆量对镍锰酸锂复合材料的电化学性能的影响。XRD测试结果显示,包覆氧化铟并不会改变正极材料LiNi0.5Mn1.5O4自身结构。当包覆量为7%时,在0.1 mA的测试电流下首次放电比容量为134.21 mAh/g,明显高于未涂覆材料(115.65 mAh/g),100次循环后容量为128.4 mAh/g,容量保持率为95.67%;在0.5 mA的测试电流条件下,首次放电比容量为78.13 mAh/g, 100次循环后比容量为56.25 mAh/g,容量保持率为64.44%。In2O3包覆起到保护材料和促进离子传导的作用,可有效提高正极材料的电化学性能。  相似文献   

8.
尖晶石型锰酸锂是当前锂离子正极材料的研究热点。结合笔者的研究工作,详细阐述了传统工业制法以及软化学方法的制备方法、优缺点及合成材料的电化学性能。重点综述了近几年来合成锰酸锂新的合成方法及其优势,介绍了改善锰酸锂材料循环性能煦多种方法,充分说明了锰酸锂被将广泛地用作锂离子电池正极材料巨大的应用前景。  相似文献   

9.
《山东化工》2021,50(5)
锂金属负极由于其低氧化还原电位和高理论比容量在锂硫化聚丙烯(S@PAN)电池中是一种备受关注的负极材料。然而,由于锂金属负极与电解质的副反应引发的锂枝晶的生长严重阻碍了其商业化过程。为了提高锂负极的整体和表面稳定性,研究了锂镁铝合金作为锂-S@PAN电池的负极。研究发现,锂镁铝合金负极能够有效抑制锂枝晶的形成和生长,锂铜半电池的库伦效率明显提高,并显著改善了全电池的循环性能。700次循环后,容量保持率为79%,远高于锂金属电极的64%。  相似文献   

10.
采用不同物质的量的次亚磷酸钠对富锂正极材料进行改性处理,结果表明:采用4%(质量分数)的次亚磷酸钠改性处理的富锂正极材料表现出优异的循环稳定性,在0.5 C经过150圈循环后仍有85.3%的容量保持率,以及较高的首次Coulombic效率。材料优异的电化学性能一方面归因于次亚磷酸钠热解产生的还原性磷化氢气体与富锂正极材料表面活性氧反应产生氧空位,能够有效降低材料在首次充电过程中的不可逆容量损失;另一方面这一改性措施可以同时实现Na^(+)掺杂,起到稳定晶格结构,抑制相转变的作用,并且能够增大晶胞间距,加快锂离子扩散,降低电化学阻抗。此外,次亚磷酸钠热解所形成的焦磷酸钠包覆层可以保护正极材料,减少过渡金属溶解,从而改善材料循环性能。  相似文献   

11.
锂离子电池报废量爆发式增长,预计到2023年,废旧锂离子电池回收利用将是一个超过300亿元产值的新兴市场,其中,锂资源占可回收金属价值的一半。为探索锂资源高效回收技术,基于现阶段研究热点,讨论了以废旧锰酸锂电池正极材料、废旧三元锂电池正极材料、废旧锰系锂离子电池负极材料为原料制备锂离子筛的方法;探讨了废旧锂离子电池中各类杂质成分对锂离子筛性能的影响;阐述了锰系锂离子筛技术在废旧锂离子电池的锂回收、盐湖卤水提锂和化工制药废水提锂等领域的应用。通过分析得出,锂离子筛的应用能够增加锂盐回收率与回收纯度,降低技术成本,应用前景广阔。  相似文献   

12.
Na2Li2Ti6O14电池具有较低的电位平台(1.3 V)以及经济成本低的特点,对便携式电子设备、能源汽车、生态环境等领域具有重大意义。由于钛酸锂钠电池固有离子电导率低的特点,因此提高钛酸锂钠电池锂离子扩散系数是目前研究中的主流方向,为此综述了钛酸锂钠的结构特点以及合成方法对钛酸锂钠材料粒径、形貌及电池电化学性能的影响;对比了不同掺杂离子和表面包覆改性对钛酸锂钠电池的放电比容量、循环性能及离子扩散系数的影响。掺入适量元素铌具有更高的锂离子扩散系数;包覆碳纳米管有更大的容量保持率,更有助于进一步提高钛酸锂钠电池电化学性能。  相似文献   

13.
探究了Mn3O4的微观结构对高温固相法制备类单晶锰酸锂(LiMn2O4)的影响。结果表明,前驱体对LiMn2O4的结构和形貌有决定性的影响。粒度小、比表面积大的类球形Mn3O4更易制得类单晶锰酸锂,其颗粒团聚致密、表面光滑,且晶胞参数小、能量密度大、Li+浓度高。类单晶锰酸锂的综合电化学性能和热稳定性远高于非类单晶材料,在0.2 C倍率下首次放电比容量和库仑效率分别高达112.50 mA·h/g、96.5%,8 C倍率下放电比容量仍有102.11 mA·h/g,200次循环后容量保持率为90.1%。类单晶锰酸锂优异的性能归因于其具有稳定的晶体结构和外露表面、较高的Li+浓度,在电化学反应中结构稳定、锂离子迁移速率快、电极极化和电荷转移阻抗小。  相似文献   

14.
中间相炭微球在锂离子电池负极材料的应用进展   总被引:1,自引:0,他引:1  
中间相炭微球(MCMB)具有良好锂离子扩散性、导电性和机械稳定性等优势,是目前应用广泛、综合性能优异的锂离子电池负极材料,但较低理论比容量是制约其发展的关键因素。为了获得性能优良的MCMB基锂离子电池负极材料,改性修饰和复合材料已然成为目前研发重点。笔者论述了碳结构、表界面和复合材料等微观结构设计对MCMB负极材料电化学性能的影响。从碳堆积结构类型、有序性、层间距以及球体粒径大小等方面,论述了碳结构微观设计对MCMB电化学性能的影响。发现具有乱层结构的MCMB在充放电过程中内部产生应力较小,且碳结构较稳定,具有优异循环稳定性;内部具有大量微孔或碳层间距较大的MCMB,在充放电过程中可提高锂离子在电极中的迁移速率,并提供更多的储锂空间,一般具有优良的充放电比容量和倍率性能;小粒径MCMB具有较短的锂离子迁移路径和随之增加的比表面积,通常具有较好倍率性能,伴随着可逆比容量和充放电效率的衰减。从表界面碳层改性、包覆和掺杂改性等方面,论述了表界面改性对MCMB电化学性能的影响。表面碳层修饰可增加MCMB与电解液的相容性及其比表面积,提高了与电解液的接触面积及贮锂容量,改善了锂离子电池负极材料的电化学性能;另外,MCMB表面包覆一层无定型碳,可避免其表面与电解液直接接触,减少电化学副反应的产生,提升其可逆比容量。从碳活性物质复合材料、非碳活性物质复合材料等方面,论述了复合材料微观结构设计对MCMB电化学性能的影响。碳活性物质可降低MCMB内部碳层结构的有序性,减少锂离子嵌入过程中的内部应力,提升MCMB循环稳定性。非碳活性物质诱导MCMB生成更加有序的碳层结构,提高MCMB的比表面积,从而改善MCMB表面与电解液分子的接触能力及其嵌锂性能,有利于提升MCMB负极材料可逆比容量、循环性能和倍率性能。MCMB具有高碳层间距和多缺陷位点等结构特征,有利于钠离子自由脱嵌,应用于钠离子电池时具有良好的可逆比容量、循环稳定性和倍率性能。MCMB的不规则定向层状结构经活化等处理具有较高比表面积,可应用于超级电容器电极材料。最后提出在高性能锂离子电池电极材料快速发展的需求下,从微观结构角度设计MCMB纳米复合材料将是MCMB负极材料的研究重点。  相似文献   

15.
为了开发出具有能量密度大、循环性能优越等特性的高能量密度电池材料,研究了硒掺杂量对富锂锰基正极材料显微组织和电化学性能的影响。结果表明,硒掺杂量增加有助于减小正极材料中颗粒粒径,但是硒掺杂量过高(x=0.21)会出现严重颗粒团聚现象,锂电池正极材料中适宜的硒掺杂量为x=0.14,此时正极材料可以获得粒径细小、均匀的颗粒;x=0.14的正极材料由于具有最佳的抑制氧损失的作用而具有最高的库伦效率(77.1%);当倍率为0.1C~10C时,正极材料的放电比容量会随着硒含量升高而先增大后减小,在x=0.14时取得最大值,即x=0.14的正极材料的倍率性能最优;x=0.14的正极材料的循环性能明显高于x=0的正极材料。  相似文献   

16.
为保证锂离子电池的正极材料磷酸亚铁锂具有优良的电化学性能,采用了碳包覆和锰元素掺杂的方法提高初始容量和充放电性能.以醋酸锰为Mn源,葡萄糖为C源,采用高温固相法合成碳包覆的LiFe0.8Mn0.2PO4/C,用XRD、恒流充放电研究了材料的结构和电化学性能.结果表明:包覆后的材料仍然具有橄榄石型晶体结构,并且包覆碳后材...  相似文献   

17.
锰基化合物具备高容量、高能量密度和高工作电压等特性,是水系锌离子电池(AZIBs)商业应用过程中的首选正极材料。然而,材料存在的电导率低、锰溶解、静电斥力效应和结构稳定性差等缺点,严重阻碍其大规模应用。采用表面活性剂辅助溶剂热法成功合成了碳纳米管(CNT)包覆ZnMn2O4/Mn2O3(ZMO/MO)复合材料,并探究了CNT包覆量对材料电化学性能和动力学过程的影响。采用X射线衍射和扫描电子显微镜对材料的结构和形貌进行表征。与纯相ZMO/MO相比,经CNT包覆的正极在0.1 A g-1电流密度下具有良好的循环稳定性和更高的倍率性能。并用循环伏安曲线和电化学阻抗探究了电极的动力学特性,两相复合提高了Zn2 扩散速率,CNT的包覆改善了材料的电荷传递。  相似文献   

18.
随着新能源电动汽车、储能产业的快速发展,确保锂资源的供给成为热点话题。锰系锂离子筛因其有对锂离子的高选择性、高吸附量、低成本等优点,在盐湖提锂方面已成为最具发展潜力的吸附剂材料之一,然而其在循环吸、脱附过程中,锰的溶损以及Jahn-Teller效应等问题会影响离子筛结构的稳定性,使吸附剂的吸附性能降低。近年来,围绕吸附性能提升,从制备方法方面进行改良的研究工作很多,可通过不同的制备方法调控锂离子筛的结构和形态。针对其存在的问题,总结了可以改善其性能的方法,包括掺杂、表面包覆以及造粒和成膜等,并在此基础上对改性锂离子筛材料在工业应用方面的发展方向进行展望,制备出高数量级循环下稳定的锂离子筛材料是未来的主要发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号