首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
采用悬浮液滴技术研究在873 K和973 K的环境温度下,麻疯树甲酯-乙醇混合物(J70E30)添加不同质量浓度的Fe3O4纳米粒子(0.25%、1%、2%)燃料液滴的蒸发特性。结果表明,在873 K和973 K两个温度下,含有不同浓度的纳米流体燃料液滴蒸发过程均可以分为瞬态加热阶段、波动蒸发阶段和平衡蒸发阶段,三种Fe3O4纳米粒子浓度液滴的归一化平方直径在平衡蒸发阶段符合d2定律。在873K温度下,由于纳米粒子较强的布朗运动导致传热效率提高,促进了燃料液滴蒸发速率,其蒸发速率随着纳米粒子浓度增加不断提高;在973 K温度下,纳米流体燃料液滴的蒸发速率则是先减小后增大,但在973 K温度下纳米流体燃料液滴蒸发速率要大于其在873 K时的蒸发速率。  相似文献   

2.
为探明柴油-麻疯树生物柴油混合燃料的蒸发过程与机理,达到生物柴油多是与柴油混合用于柴油机缸内稳定燃烧的目的,通过碱性酯交换方法制备生物柴油,并采用热电偶挂滴技术,研究不同掺混比例麻疯树油在环境温度623 K和873 K下的蒸发特性。结果表明:低温下,柴油的液滴寿命为3. 663 s/mm~2,随着麻疯树生物柴油的掺混比例的增大,液滴有较长的蒸发寿命,JME100(纯麻疯树生物柴油)的液滴寿命约为JME10(柴油中混10%的麻疯树生物柴油)液滴寿命的2. 3倍;高温下,寿命最短的柴油液滴和寿命最长JME100液滴的寿命分别为1. 818 s/mm~2和JME100的3. 61 s/mm~2,相比于623 K环境温度明显缩短;同样,混合液滴平均蒸发率k会随着温度的提高而显著增大。  相似文献   

3.
利用悬挂式液滴蒸发试验装置,结合高速背光成像技术,研究了麻疯树油液滴在高温环境(673、773、873、973和1 073 K)下的微爆和蒸发特性,并对麻疯树油中的3种主要组分液滴的蒸发特性进行了分析.结果表明:麻疯树油液滴的微爆是由于内部组分的热解导致的,并且随环境温度的升高,其微爆强度增大.麻疯树油液滴在环境温度为673 K时,液滴稳定蒸发,蒸发过程包括初始膨胀阶段、平衡蒸发阶段和残留物蒸发阶段;在环境温度为773~1 073 K时,液滴发生微爆,包含初始膨胀阶段、平衡蒸发阶段、微爆蒸发阶段和残留物蒸发阶段;当环境温度高于873 K时,首次观测到“蒸气羽流”和“蒸气云”现象,液滴蒸发速率大幅提高.  相似文献   

4.
针对多组分混合燃料的喷雾过程研究了相应的液滴蒸发模型,着重于研究混合燃料的组分对其液滴蒸发特性的影响.对柴油-生物柴油混合燃料的液滴蒸发模拟,依据燃料本身的特点,分别采用连续热力学方法和离散组分法描述其中柴油和生物柴油的组成.利用所得模型,对单组分燃料、双组分燃料以及生物柴油的液滴进行了蒸发模拟,通过将液滴蒸发历史曲线与试验结果对比,发现对于这些燃料液滴的蒸发模拟结果与相应试验数据很好地吻合,证实了此混合燃料液滴蒸发模型的正确性.此外,还着重对柴油-生物柴油的混合燃料的液滴进行了蒸发模拟研究,探讨混合燃料成分对其液滴蒸发特性的影响.结果表明:轻质柴油组分在蒸发过程中优先蒸发,而相对重质的柴油组分的蒸发则相对滞后,生物柴油在混合燃料中的质量分数则在液滴蒸发过程中不断增加,随着重质组分在柴油中所占比例达到一定程度之后,生物柴油的质量分数则开始迅速减小.  相似文献   

5.
基于生物乙醇燃料的贫燃预混、预蒸发燃烧技术(Lean Premixed Pervaporation,LPP),采用数值模拟方法,研究了预混室内生物乙醇雾化蒸发流场,分析了预热空气温度为500、600和1 000 K以及旋流数为0.47、0.8和1.41时的生物乙醇蒸发和气体混合特性的规律。研究表明:在LPP预混室旋流流场中,中心回流区宽度随预混室距离的增加先增大后减小,并且会受喷雾射流的影响拉伸变长,中心回流区随旋流强度的增大更贴近喷雾出口,角回流区的长度随旋流强度增大而缩短直至消失,旋流强度对液雾整体蒸发速率影响不大,但会影响液雾分布;进气温度增加会增大进气速度,提高液滴蒸发速率,缩短液雾炬长度;液滴蒸发过程存在一定程度上的压力振荡,会对LPP不稳定燃烧过程产生一定影响。  相似文献   

6.
建立两组分液滴蒸发理论模型,利用Matlab 6.5编程,模拟计算高温气流中液滴的蒸发过程,得出液滴的蒸发规律,而且计算结果与试验结果吻合很好.模拟结果和试验结果表明:在蒸发过程中,两组分液滴蒸发不满足D2定律,乙醇组分比水组分蒸发快,随着乙醇浓度降低,蒸发速率不断下降.乙醇浓度越大,液滴蒸发越快.气流温度越高、气流速度越大,液滴蒸发时间越短,液滴蒸发速度越快.  相似文献   

7.
为了探究乙醇和生物柴油混合燃料的液滴微爆特性,设计并建立了悬挂液滴燃烧的实验装置和实验系统,在管式加热炉内用高速摄影拍摄并记录液滴的变化过程,以此得到了液滴的直径变化和微爆延迟,实验结果表明燃料的组分变化对液滴的微爆表现和性质有显著的影响,在混合燃料中乙醇和生物柴油的含量接近相等时液滴的微爆表现最好。  相似文献   

8.
为了探明添加正丁醇对柴油蒸发特性的影响,采用石英丝挂滴技术研究了不同温度下正丁醇、柴油及其混合燃料的蒸发特性,并利用高速摄像技术记录了液滴蒸发过程中直径和形态的变化.研究表明:与柴油两阶段蒸发特性相比,正丁醇瞬态加热阶段较短,正丁醇比柴油蒸发快,且提高环境温度可以降低正丁醇与柴油蒸发特性的差异性.正丁醇/柴油混合燃料比柴油蒸发快,正丁醇添加主要影响柴油蒸发过程的前阶段.高温下,与柴油相比,正丁醇/柴油混合燃料的蒸发特性发生根本变化,其蒸发过程呈现三阶段蒸发特性,液滴出现气泡生成、膨胀和喷气现象,液滴直径波动剧烈,这是由于正丁醇/柴油混合燃料沸点差异性导致的.  相似文献   

9.
柴油含水乙醇乳化燃料物性及喷雾燃烧特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
试验使用不同配比的柴油含水乙醇乳化燃料,对其理化、喷雾和燃烧特性进行了研究。随着柴油含水乙醇乳化燃料中含水乙醇含量的增加,乳化燃料的密度和运动黏度上升,表面张力略微下降,初始蒸馏温度下降,含氧量升高,十六烷值和低热值降低。试验使用定容燃烧弹,在常温高压和高温高压环境下,对乳化燃料非蒸发喷雾、蒸发喷雾及喷雾燃烧的特性进行了测试。研究结果表明:随着乳化燃料中含水乙醇比例升高,非蒸发喷雾贯穿距和喷雾锥角变化不大;蒸发喷雾贯穿距和喷雾锥角略微减小,但无明显规律,而蒸发喷雾中液相贯穿距离明显增加;燃烧火焰自发光亮度逐渐降低,表征碳烟生成量逐渐减少;在900K环境温度、21%氧体积分数条件下着火滞燃期变化不大。  相似文献   

10.
以超临界环境中RP-3航空煤油的悬停液滴为研究对象,实验研究了其在超临界温度下的蒸发特性受液滴初始温度的影响.通过分析不同初始温度下液滴的无量纲直径的平方、瞬态蒸发常数、液滴寿命和热膨胀率等参数的变化规律后发现,较高初始温度的液滴主要通过缩短初始加热时间来提高蒸发效率,当液滴初始温度从293.8,K升高至373.1,K时,3种不同环境压力下的液滴蒸发时间分别降低了31.55%,、32.25%,和34.73%,.此外,还发现液滴的初始温度越高,其出现超临界散射光斑时的液滴直径越大,出现时间越早.  相似文献   

11.
Homogeneous charge compression ignition (HCCI) engines are amenable to a large variety of fuels as long as the fuel can be fully vaporized, mixed with air, and receive sufficient heat during the compression stroke to reach the autoignition conditions. This study investigates an HCCI engine fueled with ethanol-in-water mixtures, or “wet ethanol”. The motivation for using wet ethanol fuel is that significant energy is required for distillation and dehydration of fermented ethanol (from biosources, not from petroleum), thus direct use of wet ethanol could improve the associated energy balance. Recent modeling studies have predicted that an HCCI engine can operate using fuel containing as little as 35% ethanol-in-water with surprisingly good performance and emissions. With the previous modeling study suggesting feasibility of wet ethanol use in HCCI engines, this paper focuses on experimental operation of a 4-cylinder 1.9-L engine running in HCCI mode fueled with wet ethanol. This paper investigates the effect of the ethanol-water fraction on the engine's operating limits, intake temperatures, heat release rates, and exhaust emissions for the engine operating with 100%, 90%, 80%, 60%, and 40% ethanol-in-water mixtures.  相似文献   

12.
Catalytic combustion of alcohols for microburner applications   总被引:1,自引:0,他引:1  
The combustion of energy dense liquid fuels in a catalytic micro-combustor, whose temperatures can be used in energy conversion devices, is an attractive alternative to cumbersome batteries. To miniaturize the reactor, an evaporation model was developed to calculate the minimum distance required for complete droplet vaporization. By increasing the ambient temperature from 298 to 350 K, the distance required for complete evaporation of a 6.5 μm droplet decreases from 3.5 to 0.15 cm. A platinum mesh acted as a preliminary measurement and demonstrated 75% conversion of ethanol. We then selected a more active rhodium-coated alumina foam with a larger surface area and attained 100% conversion of ethanol and 95% conversion of 1-butanol under fuel lean conditions. Effluent post-combustion gas analysis showed that varying the equivalence ratio results in three possible modes of operation. A regime of high carbon selectivity for CO2 occurs at low equivalence ratios and corresponds to complete combustion with a typical temperature of 775 K that is ideal for PbTe thermoelectric energy conversion devices. Conversely for equivalence ratios greater than 1, carbon selectivity for CO2 decreases as hydrogen, olefin and paraffin production increases. By tuning the equivalence ratio, we have shown that a single device can combust completely for thermoelectric applications, operate as a fuel reformer to produce hydrogen gas for fuel cells or perform as a bio-refinery for paraffin and olefin synthesis.  相似文献   

13.
The air-gasification of cassava rhizome mixed with Ni/α-Al2O3 catalyst in a drop tube reactor for production of fuel gas was carried out in this work. The conversion was performed at different temperatures from 873 to 1073 K, equivalence ratio (ER) of 0.2–0.6, and semi-continuous feeding of raw material for 30 min. Gas yields, cold gas efficiency (CGE) and lower heating value of fuel gas (LHV) were compared with non-catalytic cases. Generally, higher temperature and ER significantly improved the performance of cassava rhizome gasification. Similar for both of non-catalytic and catalytic cases, at optimum temperature of 1073 K and ER of 0.6, the maximum gas yields were closed to 80% while yields of char and tar were kept minimal at 4% and 11%, respectively. Addition of prepared catalysts resulted in greater CGE and LHV of 92% and 8.6 MJ/N m3, respectively, comparing to the non-catalytic case of 61% and 6.36 MJ/N m3, respectively. Moreover, the measured gas distribution data were comparable with the result obtained from thermodynamics conversion model based on minimization of Gibbs free energy of product gases using elemental composition of cassava rhizome (C3.13H5.2O3.52N0.03S0.04.) constrained by mass and energy balances for the system. As a result, the gas product distribution and characteristics obtained from this experimental implied its suitability for heat and power applications.  相似文献   

14.
Biomass based oxygenated fuels have been identified as possible replacement of fossil fuel due to pollutant emission reduction and decrease in over-reliance on fossil fuel energy. In this study, 4 v% water-containing ethanol was mixed with (65–90%) diesel using (5–30%) biodiesel (BD) and 1 v% butanol as stabilizer and co-solvent respectively. The fuels were tested against those of biodiesel–diesel fuel blends to investigate the effect of addition of water-containing ethanol for their energy efficiencies and pollutant emissions in a diesel-fueled engine generator. Experimental results indicated that the fuel blend mix containing 4 v% of water-containing ethanol, 1 v% butanol and 5–30 v% of biodiesel yielded stable blends after 30 days standing. BD1041 blend of fuel, which composed of 10 v% biodiesel, 4 v% of water-containing ethanol and 1 v% butanol demonstrated −0.45 to 1.6% increase in brake-specific fuel consumption (BSFC, mL kW−1 h−1) as compared to conventional diesel. The better engine performance of BD1041 was as a result of complete combustion, and lower reaction temperature based on the water cooling effect, which reduced emissions to 2.8–6.0% for NOx, 12.6–23.7% particulate matter (PM), 20.4–23.8% total polycyclic aromatic hydrocarbons (PAHs), and 30.8–42.9% total BaPeq between idle mode and 3.2 kW power output of the diesel engine generator. The study indicated that blending diesel with water-containing ethanol could achieve the goal of more green sustainability.  相似文献   

15.
Cobalt molybdenum (Co-Mo) carbides were prepared by the carburization of Co-Mo oxides at temperatures of 723–973 K in a stream of CH4/H2 gas. The carburized catalysts were evaluated using a single-stack fuel cell and three-electrode cell. The results showed high activities for the anodic electrooxidation of hydrogen over the Co-Mo catalysts carburized at 873 and 923 K. The 873 K carburized Co-Mo catalyst had the highest activity and achieved 10.9% of the performance of a commercial Pt/C catalyst in a single-stack fuel cell. The XRD, TPC, TPR and XPS results showed that the Co-Mo oxycarbide in the bulk and on the surface are the active species for the hydrogen oxidation reaction.  相似文献   

16.
Using different ethanol–gasoline fuel blends, a VARICOMP engine was used to study the effect of varying the compression ratio on SI engine performance. The performance tests were carried out using different percentages of ethanol in gasoline fuel, up to 40%, under variable compression ratio conditions. The results show that the engine indicated power improves with the percentage addition of the ethanol in the fuel blend. The maximum improvement occurs at 10% ethanol–90% gasoline fuel blend. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Smaller scale and higher energy density power sources have received increasing interest in last few years. A photographic method was adopted to study the characteristics of ethanol evaporation and its diffusion flame under the effect of a DC field in present study. A transparent quartz glass tube with an inner diameter of 1.8 mm and an outer diameter of 3 mm was used as a burner. A laminar diffusion flame was established on top of the vertical burner, and a DC field was imposed on the flame along the jet direction. Test conditions involved fuel mass flow rates of 1.0 to 2.2 ml/h, and electric field voltages of 0 to 10 kV. The extremely small ethanol flow rates were accurately controlled by a syringe pump. The flame shapes and the dynamic ethanol vapor–liquid interface were visually observed using a high speed CCD camera. It was found from the experiments that the extent of ethanol evaporation and the diffusion flame shape both change with the mass flow rates of ethanol. The direction and intensity of the DC field have a great impact on the extent of evaporation, flame structure, and soot emission. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20283  相似文献   

18.
The concept of thermochemical exhaust heat recuperation by steam reforming of biofuels is considered. Thermochemical recuperation can be considered as an on-board hydrogen production technology. A schematic diagram of a fuel-consuming equipment with thermochemical heat recuperation is described. The thermodynamic analysis of the thermochemical recuperation systems was performed to determine the efficiency of using various fuels, in particular, methanol, ethanol, n-butanol, and glycerol. The thermodynamic analysis was performed by Gibbs free energy minimization method and implemented using the Aspen Hysys program. The thermodynamic analysis was performed for a wide temperature range from 400 to 900 K, for steam-to-fuel of 1, and pressures of 1 bar. The maximum fuel conversion reaches for the following temperatures: methanol - 600 K, ethanol - 730 K, n-butanol - 860 K, glycerol - 890 K. The dependence of the reforming enthalpy on temperature is determined. It was shown that the reaction enthalpy determines the heat transformation coefficient, which shows the ratio of the low heat value of synthetic fuel and the low heat value of the initial fuel. For all studied fuels, the maximum value of the transformation coefficient is observed for steam reforming of ethanol and the maximum heat transformation coefficient is 1.187. The temperature range is determined at which the maximum efficiency of the use of thermochemical recuperation occurs due to the reforming of biofuels. For methanol, the effective temperature is about 600 K, for ethanol is about 700 K, for n-butanol is 850 K, for glycerol is more than 900 K. The results obtained make it possible to efficiently select the type of fuel for thermochemical recuperation due to steam reforming.  相似文献   

19.
This work explores the influence of hydrogen and ethanol on improving engine's behavior of Maduca longifolia oil (MO) based dual fuel diesel engine. A mono cylinder diesel engine was tested in dual fuel mode of operation at the rated power output of 3.7 kW under variable hydrogen energy shares from 0 to the maximum allowable limit (until severe knocking i.e. upto 20%). The knock limit was further extended by injecting water and ethanol at the intake manifold and the engine's performance, emission and combustion characteristics were analyzed. In addition ethanol was also injected and introduced along with the intake air for comparison with hydrogen dual fuel mode. Dual fuel operation increased the BTE from 25.2% with neat MO to a maximum of 28.5% and 30% respectively with hydrogen and ethanol for the energy share of 15% and 38% where as the BTE was 30.8% with ND. The smoke opacity was reduced from 78% with neat MO to 58% for the hydrogen energy share of 15% which is the MEP (maximum efficiency point) whereas the smoke emission was noted as 51% with ND operation. However, hydrogen induction increased the NO (nitric oxide) emission. Injection of water and ethanol at the inlet was observed to extend the knocking limit with improved BTE. The BTE reached a maximum of 30.1% with 5% water and 30.8% with 10% ethanol injection. The MEPs were arrived as 31% and 30% hydrogen energy shares respectively with 5% water and 10% ethanol injection. It was concluded that hydrogen induction can be very effective in improving the diesel engine's performance when using MO as base fuel when operating on dual fuel mode. The performance could be improved by extending the knock limit by injecting ethanol and water along with hydrogen.  相似文献   

20.
Theoretical study of fuel gas (H2 + CO) production for SOFC from bioethanol was carried out to compare performances between two reforming technologies, including steam reforming (SR) and supercritical-water reforming (SCWR). It demonstrates that the fuel gas productions are comparable among the two reforming systems; however, SCWR requires the operation at much higher temperature and pressure than SR. The maximum hydrogen yield can be obtained at 850 K, atmospheric pressure, ethanol to water molar feed ratio of 1:20 for SR system and at 1300 K, 22.1 MPa, and ethanol to water feed ratio of 1:20 for SCWR. The use of a distillation column to purify the bioethanol feed was proven to improve the fuel conversion efficiency of both systems. The analysis reveals that SCWR is a promising system for fuel production for SOFC when a gas turbine is incorporated to the system for energy recovery. Further, it is not necessary to distil bioethanol to obtain too high ethanol recovery (i.e. >90%) as higher energy consumption at the distillation column could lead to lower overall thermal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号