共查询到18条相似文献,搜索用时 46 毫秒
1.
建立一个二维、非等温质子交换膜电解池两相流稳态模型,研究不同电压下电解池膜电极组件(MEA)中温度、液态水饱和度、膜态水分布以及温度、液态水饱和度和膜厚对质子交换膜电解池性能的影响,并通过实验验证模型的可靠性。实验结果表明:即使忽略接触电阻,膜润湿性较好,高电压(2.0 V)下欧姆损失占比仍可达到34.7%;随着电压的增大,极化损失的主导部分由活化损失变为欧姆损失,且传质损失占总极化损失的比例最小;当电压较小时,膜水含量是质子交换膜(PEM)电导率的主要影响因素,当电压较大时,温度是PEM电导率的主要影响因素。升高温度、增加液态水饱和度及降低膜厚均能有效提高电解池的性能。 相似文献
2.
为了提高质子交换膜燃料电池(PEMFC)水管理,本文借助多相流格子Boltzmann模型(LBM)模拟分析了PEMFC碳纸气体扩散层(GDL)内的气液两相输运过程,主要研究了GDL疏水性对气液两相流的影响。结果表明:液态水流路径不仅受到GDL结构形态的影响,而且受到材料疏水性影响。液态水在疏水性弱的GDL中不仅容易沁入,而且容易在孔隙中达到饱和;相反,在疏水性较强的GDL中,液态水很难突破沁入小尺寸孔隙,而从孔径较大的孔隙流通,从而形成毛细力主导的指进流动。 相似文献
3.
4.
针对质子交换膜燃料电池(PEMFC)水管理开展了研究,建立了一维非等温两相流解析模型,研究了不同电流密度、微孔层接触角和不同加湿方案对电池内部水分布和温度分布的影响,提出了更好的进气加湿方案。结果表明:电流密度增大会导致阳极拖干、阴极水淹加剧,导致电池各部分温度上升。因各层材料亲水性不同,在交界面处能观察到液态水阶跃现象。增大微孔层接触角促进阴极液态水反扩散到阳极,一定程度上缓解阳极变干,但过大的接触角可能导致阴极水淹加剧。通过采取\"阳极充分加湿、阴极低加湿\"的进气加湿方案可以有效提高电池性能,并且能在一定程度改善电池内部受热,提高电池使用寿命。 相似文献
5.
6.
基于两相格子Boltzmann模型,对大密度比下有一定水平间距的双液滴冲击液膜的流动过程进行了仿真,模拟了不同液滴初始间距和不同雷诺数下液滴冲击液膜的动态过程,重点分析了不同液滴初始间距和雷诺数下产生不同冲击和溅射现象的原因,以及不同参数对冲击和溅射行为的影响.总结了中心位置水花溅射高度随时间的变化规律,并论述了冲击和溅射过程中的内在作用机理.结果表明:在一定范围内,初始间距和雷诺数越大,中心位置水花溅射高度上升越快;随着雷诺数的增大,冲击、碰撞的程度越剧烈,中心位置水花顶端有液滴飞出. 相似文献
7.
该文研究在模拟燃料电池环境下的质子交换膜(PEM)材料的损伤情况。选用2种溶液模拟质子交换膜燃料电池(PEMFC)环境,一种是接近燃料电池实际运行环境溶液,称为正规溶液(RS),另一种则为加速试样老化的加速持久性(ADT)溶液。采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)技术对老化试样表面的化学成分变化进行研究;同时,采用机械拉伸性能试验对老化前后试样进行研究。试验结果表明,在模拟PEMFC环境下,随着老化时间的增加,试样表面分子结构和化学成分发生明显变化,抗拉强度和断裂伸长率降低,试样材料损伤加剧。 相似文献
8.
质子交换膜(proton exchange membrane,PEM)电解制氢运行灵活,具有优异的可再生能源波动适应性,是极具发展前景的绿色制氢技术。然而,在实际PEM电解制氢运行过程中,可能存在离子污染,对PEM电解堆的性能以及运行寿命产生很大影响。为此,首先分析了离子污染的来源,一方面来自水中的残余金属阳离子,如Na+、Ca2+、Mg2+等,另一方面来自电解堆内部关键材料和系统水循环管路因化学或电化学腐蚀产生的痕量金属离子,如Fe3+、Cu2+、Ni2+等;然后综述了不同离子污染对电解性能的影响,包括欧姆过电位、阴极反应过电位与阳极反应过电位;最后,综述了离子污染缓解策略,即如何避免规模化电解制氢过程中杂质离子污染带来的能效和成本问题。 相似文献
9.
对暴露在模拟质子交换膜(PEM)燃料电池环境下的质子交换膜(Nafion212膜)的化学损伤进行研究.采用质量损失法研究Nafion212膜在模拟PEM燃料电池环境下的质量损失情况.采用扫描电子显微镜(SEM)研究Nafion212膜表面的微观形貌变化.采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)技术对老化试样... 相似文献
10.
分析了PEMFC电池内部水的生成和转移过程,列举了各种增湿方法,指出了几种外增湿法对小型氢空质子交换膜燃料电池进行增湿的优缺点和对电池性能的影响。 相似文献
11.
A deep understanding of the behavior of microstructural parameters in proton exchange fuel cells (PEFCs) will help to reduce the material cost and to predict the performance of the device at cell scale. Changes in morphological configuration, that is, fiber diameter and fiber orientation, of the gas diffusion layers (GDLs) result in variations of fluid behavior throughout the layer, and therefore, the microstructural parameters are affected. The aim of this study is to analyze, for three selected fiber diameters and different percentage presence of inclined fibers, the behavior of the different microstructural parameters of the GDLs. This study is carried out over digitally created two‐dimensional GDL models, in which the fluid behavior is obtained by means of the lattice Boltzmann method. Once the fluid behavior is determined, the microstructural parameters, that is, the porosity, gas‐phase tortuosity, obstruction factor, through‐plane permeability, and inertial coefficient, are computed. Several relationships are found to predict the behavior of such parameters as function of the fiber diameter, presence of inclined rods, or porosity. The results presented in this work are compared and validated by previous theoretical and experimental studies found in the literature. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
通过格子Boltzmann方法中的多组分Shan-Chen模型对燃料电池气体扩散层与双极板流道特征结构进行模型构建,探究不同孔隙率、压缩比以及积水液滴位置对质子交换膜燃料电池(PEMFC)内气体组分传递的影响。模拟结果发现小孔隙率会造成气体的堵塞,影响传质效率,而气体扩散层的压缩效应导致结构变形进而造成气体在流道进口处的堵塞;压缩导致气体通道变得狭窄,促进氧气接触下部的催化层发生反应,流道附近的反应强度会随着压缩比的增加而增加;当积水液滴位于扩散层中部时,其能够将部分的反应气体引导到催化层处,从而增加反应气体的浓度;而位于底部的液滴会将催化剂覆盖从而阻碍催化反应的进行。 相似文献
13.
Among the parameters to take into account in the design of a proton exchange membrane fuel cell (PEMFC), the energy conversion efficiency and material cost are very important. Understanding in deep the behavior and properties of functional layers at the microscale is helpful for improving the performance of the system and find alternative materials. The functional layers of the PEMFC, i.e., the gas diffusion layer (GDL) and catalyst layer, are typically porous materials. This characteristic allows the transport of fluids and charges, which is needed for the energy conversion process. Specifically, in the GDL, structural parameters such as porosity, tortuosity, and permeability should be optimized and predicted under certain conditions. These parameters have effects on the performance of PEMFCs, and they can be modified when the assembly compression is effected. In this paper, the porosity, gas‐phase tortuosity, and through‐plane permeability are calculated. These variables change when the digitally created GDL is under compression conditions. The compression effects on the variables are studied until the thickness is 66% of the initial value. Because of the feasibility to handle problems in the porous media, the fluid flow behavior is evaluated using the lattice Boltzmann method. Our results show that when the GDL is compressed, the porosity and through‐plane permeability decrease, while the gas‐phase tortuosity increases, i.e., increase the gas‐phase transport resistance. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
《International Journal of Hydrogen Energy》2023,48(28):10644-10658
Proton exchange membrane fuel cells (PEMFCs) are promising clean power sources with high energy conversion efficiency, fast startup, and no pollutant emission. The generated water in the cathode can cause water flooding of the catalyst layer (CL), which in turn can significantly decrease the fuel cell performance. To address this significant issue of PEMFC, a new gas diffusion layer (GDL) with non-uniform distribution of PTFE is proposed for water removal from the CL. The feasibility of this new GDL design is numerically evaluated by a Lattice-Boltzmann Method (LBM)-based two-phase flow model. The porous structure of the new GDL design is numerically reconstructed, followed by LBM simulations of the water transport in GDL. Three types of different wetting conditions are considered. It is found that liquid water transported 7.87% more with a single row of wetted solids and 13.36% more with two rows of wetted solids. The results clearly demonstrate that the liquid water can be effectively removed from the GDL by proper arrangement of hydrophilic solids in the GDL. 相似文献
15.
16.
17.
Gaoyang Liu Junyuan Xu Yituo Wang Juming Jiang Xindong Wang 《International Journal of Hydrogen Energy》2014
Catalyst coated membrane (CCM) is the core component of proton exchange membrane (PEM) water electrolysis and the main place for electrochemical reaction and mass transfer. Its properties directly affect the performance of PEM water electrolysis. Aiming at decreasing the polarization loss and the ohmic loss, a novel CCM embedded with Cs1.5HPA in the skeleton of the Nafion® ionomer and the Nafion® membrane was prepared and possessed functionality of improved protonic conductivity. Meanwhile, the Cs1.5HPA-Nafion ionomer content in the catalyst layers was further optimized. The SEM, EDS and pore volume distribution measurement showed that the Cs1.5HPA embedded in the CCM without agglomeration and the micropore and mesopore were well distributed in the catalyst layer. Furthermore, CCMs were tested in a PEM water electrolyser at 80 °C, beneficial effects on both the Tafel slope and the iR loss were obtained due to the improved protonic conductivity as well as the appropriate pore structure and increased specific pore volume. The performance of the electrolyser cell was obviously improved with the novel CCM. The highest cell performance of 1.59 V at 2 A cm−2 was achieved at 80 °C. At 35 °C and 300 mA cm−2, the cell showed good durability within the test period of up to 570 h. 相似文献
18.
《International Journal of Hydrogen Energy》2021,46(68):33957-33968
In this study, the lattice Boltzmann method was used to simulate the three-dimensional intrusion process of liquid water in the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell (PEMFC). The GDL was reconstructed by the stochastic method and used to investigate fiber orientation's influence on liquid water transport in the GDL of a PEMFC. The fiber orientation can be described by the angle between a single fiber and the in-plane direction; three different samples were simulated for three different fiber orientation ranges. The simulated permeability correlated well with the anisotropic characteristics of reconstructed carbon papers. It was concluded that the fiber orientation had a significant effect on the liquid invasion pattern in the GDL by changing the pore shape and distribution of the GDL. The results indicated that the stochastically reconstructed GDL, taking into account the fiber orientation, better demonstrates the mass transport properties of the GDL. 相似文献