首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 144 毫秒
1.
王艺慈  董方  王宝峰 《特殊钢》2007,28(2):22-23
研究了0-6%BaO含量对包钢CSP流程浇铸Q235B、SS400等中碳钢、主要成分(%)为31.60CaO、27.20SiO2、10.48C、4.85Al2O3、碱度为1.16的结晶器保护渣熔化温度、析晶温度和析晶率的影响。试验结果表明,在实验渣中加入≤2%BaO,可有效地改善保护渣的润滑性能,抑制晶体析出,改善熔渣的玻璃性能;BaO含量≥4%时,完全抑制晶体析出,得到良好的玻璃态渣膜。  相似文献   

2.
通过钢渣平衡实验研究,分析了精炼渣成分对82B钢液T.O和点状不变形夹杂物成分的影响;通过Fact-Sage热力学计算,得出硅锰脱氧82B钢中MgO·Al2O3尖晶石夹杂的生成条件.结果表明:降低精炼渣碱度、提高Al2O3含量均利于钢水全氧含量的降低;随着Al2O3含量的提高,复合氧化物夹杂的熔点升高.当熔渣碱度为0.93、Al2O3含量为5.1%时,夹杂物熔点最低;熔渣碱度为1.14、Al2O3含量为25.6%时,高Al2O3活度的熔渣导致MgO·Al2O3尖晶石夹杂生成;熔渣碱度为1.97、Al2O3含量为25.9%时,由于碱度升高,钢中无MgO·Al2O3尖晶石类夹杂物生成;熔渣碱度为0.93、Al2O3含量为5.1%时,由于Al2O3含量降低,钢中无MgO·Al2O3尖晶石类夹杂物生成,且夹杂物熔点较低.   相似文献   

3.
董方  邓浩华  郄俊懋 《特殊钢》2014,35(2):9-12
使用CQKJ-Ⅲ矿渣熔化温度测定仪和MTLQ-RD-1300半球熔点熔速综合测定系统,通过正交实验研究碱度、BaO(6%~14%)、CaF2(0~10%)和Al2O3(18%~28%)对基础精炼渣系CaO-SiO2-Al2O3一MgO-CaF2半球熔点(熔化温度)和熔化速率的影响。结果表明,对高碱度精炼渣熔点的影响因素为CaF2、BaO、Al2O3、碱度(R)依次减弱;对熔速的影响因素为碱度(R)、Al2O3、CaF2、BaO依次减弱,提高精炼渣碱度同时添加适量的Al2O3可以降低精炼渣的熔点和提高熔速,BaO、CaF2的加入也能不同程度的降低精炼渣的熔点,提高精炼渣的熔速;当碱度为4~5,BaO 10%~14%,Al2O3 23%~28%,CaF2 5%~10%时,精炼渣的熔点比较低(约1340℃),熔速比较大(熔化时间<50 s);减小高碱度精炼渣的粒度可以降低熔渣的熔点和提高熔化速率。  相似文献   

4.
为了实现高磷转炉渣中磷的有效富集, 以P2O5质量分数为10%的Ca O-Si O2-Fe2O3-P2O5-MgO-MnO炉渣为研究对象, 通过实验室热态实验研究了高磷转炉渣中磷的赋存形式, 探讨了炉渣碱度和Fe2O3含量对高磷转炉渣中磷的富集行为的影响.结果表明:在高磷转炉渣中磷元素主要以n2CaO·Si O2-3CaO·P2O5 (n C2S-C3P) 固溶体的形式存在, 炉渣碱度和Fe2O3含量变化对其赋存形式没有影响.炉渣碱度变化会影响2CaO·Si O2的生成量, 碱度太高或太低, 均不利于渣中磷向富磷相富集, 控制炉渣碱度在1.51.8之间有利于渣中磷元素的充分富集.增加渣中Fe2O3含量, 可以减少2CaO·Si O2的析出量, 提高富磷相中P2O5的含量, 有利于渣中磷元素的富集.  相似文献   

5.
采用FactSage热力学计算及实验室研究相结合的方法,研究了碱度(R)2.5~5.4、Al2O3(14%~30%)和MgO(3%~15%)对GCr15轴承钢CaO-Al2O3-SiO2-MgO四元精炼渣矿相析出的影响,结果表明,1 600℃时,随着碱度由2.4增加至5.4,硅酸盐类矿物的析出量由56%降低至30%,Ca3Al2O6、Ca3MgAl4O10和CaAl2O3三种矿物的总析出量从28.0%增加至58.2%;当渣中Al2O3含量由14%增加至30%时(R4.4,7%MgO),析出的金属氧化物固溶体由26%降低到3.5%,硅酸盐类矿物析出量由42%降低到33%,Ca3Al2O6、Ca3MgAl4O10和CaAl2O3三种矿物的析出量则由32.2%增大到63.2%;当渣中MgO含量由5%增加至15%时(R4.4,26%Al2O3),硅酸盐类矿物,Ca3Al2O6、Ca3MgAl4O10和CaAl2O4析出量变化并不显著。当碱度4~5,4.5%~5.5%MgO,24%~27%Al2O3时,四元渣具有适宜的黏度和熔化温度,有较好的流动性和吸附夹杂物能力。热态重熔实验确定的渣系矿相组成与热力学模拟结果一致。  相似文献   

6.
郅程  姜银举  辛文彬  邓永春  张婧 《稀土》2024,(1):95-106
为回收低稀土含量熔渣中稀土资源,本文尝试了一种自然重力沉降分离其中富稀土相的方法。对低稀土含量熔渣完成富稀土相的结晶析出后,通过添加稀渣剂,降低上部液相粘度,实现稀土结晶相的重力沉降。结果表明,渣系成分不同,适宜富稀土相沉降的保温温度及沉降效果均不同。对于含P2O5渣系,较适宜的保温温度范围为1300℃~1350℃,其底部沉降层中La2O3含量可达35.21%~37.12%(质量分数),富集倍数为2.24~2.49,其中析出相沉降率最高达91%;对于含CaF2渣系,相比于1350℃时,保温温度降为1200℃可增强沉降效果,但总体而言含CaF2渣系的沉降效果不如只含P2O5渣系。随着稀渣剂B2O3含量由0增加至3%,沉降效果逐渐增加;添加3%B2O3时熔渣底部沉降层中La2O3含量为3...  相似文献   

7.
参照实际转炉脱磷炉渣,配制了不同F、P2O5、FeO和MgO含量及碱度的渣样,用化学分析方法测试了不同组分对渣中磷的枸溶率的影响规律.结果表明:当脱磷渣中含有F时,P主要与F形成氟磷灰石,使得磷的枸溶率随渣中F含量的升高而急剧降低,当不含氟时枸溶率可达92.5%,当氟质量分数达到0.5%时枸溶率已降低到50%以下;随碱度增加,由于渣中Ca2+含量增加,破坏了硅氧网络结构,使得枸溶率有所上升;渣中MgO含量升高,由于Mg2+在熔融冷却过程中会抑制β-Ca3(PO4)2晶体的析出,而β-Ca3(PO4)2中磷不易为质量分数为2%的柠檬酸液溶出,而使枸溶率有所升高;随渣中P2O5含量升高,由于P5+与O2-形成络离子,P5+位于O2-密集形成的间隙中,不易溶出,使得枸溶率有所下降;渣中FeOn升高,枸溶率随之降低.  相似文献   

8.
电渣重熔过程熔渣成分变化使其性质发生改变,将影响重熔工艺顺行和铸锭质量。针对CaF2-Al2O3-MgO-CaO电渣重熔渣系,研究氟化物挥发导致的熔渣成分变化规律,分析随成分变化熔渣结晶行为及流动性质的演变规律。研究结果表明,在电渣重熔过程因氟化物挥发造成熔渣中CaF2和Al2O3含量下降,CaO含量上升,而MgO含量基本保持不变。随熔渣成分变化,渣层中析出的CaF2晶体由点状或球状变为块状或条状,MgO·Al2O3晶体由球状变为树枝状,作为主要析出相的铝酸钙晶体由CaO·6Al2O3变为CaO·2Al2O3并最终变为12CaO·7Al2O3。生产中结晶器上部的渣皮更易发生分层结晶现象,析出相中靠近熔池侧主要为CaF2晶体,靠近结晶器侧主要...  相似文献   

9.
在电渣重熔含钛高温合金时, 加入Ti O2可以抑制合金中钛的烧损.而渣系的物理性质关系着冶炼的平稳进行和产品的优良品质.本研究以Ca F2-Al2O3-Ca O-MgO为基, 加入不同含量的Ti O2, 设计了电渣重熔高温合金用五元渣系, 并研究了Ti O2含量对渣系熔点、黏度、密度、光学碱度和电导率等物性参数的影响规律.结果表明, 熔点变化范围为12641296℃, 且随着Ti O2含量增加, 渣相中低熔点相逐渐生成, 渣系的熔点逐渐降低;渣系中加入Ti O2可以降低黏度, 且渣系黏度在高温段 (13501550℃) 受温度变化影响不大, 利于改善电渣重熔钢锭的表面成形质量;Ti O2质量分数09%范围内, 渣系电导率、光学碱度和密度随Ti O2含量增多呈降低趋势, 且密度和光学碱度变化范围不大, 五组渣系都符合电渣重熔对密度和光学碱度的要求.  相似文献   

10.
BaO 和 Li2O 对 CaO 基脱硫精炼渣熔点和粘度的影响   总被引:10,自引:1,他引:9  
以CaO(bal)-SiO2(22.4%)-Al2O2(11.6%)-CaF2(10%)精炼渣作为基础渣系,用BaO、Li2O替代其中等量的CaO含量,固定(CaO+RxO)/SiO2=2.5(RxO代表BaO或者Li2O),对该脱硫精炼渣系的熔点和粘度进行了研究。结果显示在传统的CaO基熔渣中加入BaO、Li2O可以降低渣系的熔点和粘度,有效地改善了渣钢反应的动力学条件。当(BaO,Li2O)=15%时,熔渣的熔点分别为1267℃和1185℃,远低于不加添加剂时的熔点1326℃,当温度为1475℃时,熔渣粘度分别为0.98Pa·s和0.51Pa·s,远小于不加添加剂时的粘度1.79Pa·s,使渣系具有良好的流动性和熔化性能。  相似文献   

11.
试验研究了组分对碱度3~5的LF精炼渣(/%:37.5~54.8CaO,9.8~18.2SiO2,20~30Al2O3,4~10MgO,3~10CaF2)粘度的影响。结果表明,CaF2和Al2O3对渣粘度影响较大,碱度和MgO对粘度影响较小。随着CaF2含量的增加,渣粘度先降低后增加;随着Al2O3含量的增加,渣粘度逐渐降低。渣中Al2O3含量为20%,CaF2≥6%或渣中Al2O3含量为25%,CaF2≥3%时,1500℃渣的粘度值低于0.5 Pa.s。试验得出粘度较优组分为4~5R,25%~30%Al2O3,6%~10%MgO,3%~6%CaF2。100 t LF精炼TC80钢生产试验表明优化后精炼渣将钢水中的硫由0.020%脱至0.005%以下,脱硫率从优化前的72%提高至84%,LF精炼终点平均T[O]为14×10-6。   相似文献   

12.
研究了B2O3对低碱度[(CaO)/(SiO2)=3~4]和高碱度[(CaO)/(SiO2)=5~7.5]两个系列CaO基精炼渣熔化温度的影响。结果表明,用B2O3比用Al2O3和CaF2更有效降低CaO基精炼渣系的熔化温度,对低碱度渣系,B2O3替代渣中的部分CaF2、Al2O3以及SiO2,都能有效降低渣的熔化温度;对高碱度渣系,B2O3替代CaF2作助熔剂时,可实现在高(CaO)/(SiO2)和(CaO)/(Al2O3)下造具有超低熔化温度的CaO基精炼渣,既可提高造渣速度,又可提高渣的脱硫磷能力和吸收硅、铝脱氧产物的能力。  相似文献   

13.
杨必文  王海北  郑朝振  陈亮  胡一航 《钢铁》2021,56(10):91-98
 为解决含钒钛铁水脱硫扒渣过程中炉渣黏稠、铁损大及后续回硫多等问题,运用FactSage热力学软件,结合高温试验,探究了B2O3+Na2O系调渣剂对钒钛铁水脱硫渣回硫、熔点及黏度的影响。结果表明,随着B2O3和Na2O加入,铁水脱硫渣熔点及黏度显著降低;调渣剂中添加CaO有助于抑制回硫。并提出了改善铁水脱硫渣性能的调渣剂配方(质量分数),即CaO 45%~55%、SiO2 10%~15%、Al2O3 5%~8%、B2O3 15%~20%、Na2O 5%~10%。调渣剂添加量为脱硫渣渣量的5%~10%时,能有效降低脱硫渣熔点和黏度,减少回硫。  相似文献   

14.
郭江  李荣 《中国冶金》2020,30(12):18-21
为了明确B2O3对高Al2O3渣稳定性的影响,基于现场高炉渣的实际成分,通过熔体物性测定仪、扫描电镜、红外光谱仪分析了B2O3对高Al2O3渣黏度和基础玻璃微观结构的影响。结果表明,随着B2O3含量的增加,炉渣黏度降低;当炉渣温度低于1 360 ℃时,炉渣随着B2O3的增加稳定性增强;炉渣温度为1 216 ℃、B2O3质量分数为2.0%时,炉渣的稳定性最好。随着B2O3含量的增加,炉渣不断玻璃化,当B2O3质量分数为2.0%时,炉渣微观结构完全是玻璃态结构,表现为假性酸性渣的性质;随着B2O3含量的增加,[Si-O-Al]键断裂,[AlO6]八面体结构振动峰增加,炉渣的稳定性越来越好。  相似文献   

15.
针对钢厂生产含硫钢(0.10%~0.21%C,0.010%~0.050%S)出现的水口堵塞问题,利用SEM和EDS对各关键工艺流程钢样和水口堵塞样进行全面分析,结果表明:各流程钢样中粒径小于10μm的夹杂物均占94%以上,单位面积夹杂物个数随工艺流程的进行呈先降低后增加的趋势。夹杂物类型主要有CaS、CaO-MgO、MnS、MgO-Al2O3、Al2O3、CaO-Al2O3、CaO、CaO-MgO-Al2O3复合夹杂物等;水口堵塞物主要由FeO、Al2O3、MgO·Al203、CaO·Al203、CaO·2Al203组成。通过电弧炉出钢前向钢液喷吹一定量的焦炭粉,控制精炼渣中(FeO)≤1.50%、碱度2.0~4.0以及采取合适的钙处理和分...  相似文献   

16.
从Al2O3活度和夹杂物成分两方面来研究精炼渣对夹杂物的影响.采用Factsage软件对CaO-Al2O3-SiO2-MgO(8%)-CaF2(8%)炉渣中Al2O3活度进行了计算,并研究了碱度和(MgO)含量对Al2O3活度的影响.当炉渣碱度从1.0增加到2.0时,炉渣中Al2O3活度随着炉渣碱度的增加而降低;当炉渣碱度从2.0增加到3.8时,Al2O3活度变化幅度很小;(MgO)质量分数分别为5%和8%的渣,Al2O3活度差距较小;在碱度高的炉渣中[Al]s容易被从炉渣还原到钢水中.在使用高碱度精炼渣的盘条中发现许多含有MgO的硬性夹杂物,并对此进行了分析,最后得出最适宜的炉渣碱度为2.5~3.0.  相似文献   

17.
采用MoSi2电阻炉在MgO质坩埚内进行了精炼渣成分(%:47~64CaO、13~23SiO2、15~25Al2O3、5~10MgO、0~8CaF2;CaO/SiO2=2.0~4.5)对0.95%C-1.50%Cr GCr15轴承钢中氧含量和夹杂物的影响的实验研究。实验中发现,随精炼渣碱度CaO/SiO2由2增加至4.5,钢液中的终点全氧含量由20×10-6降至11×10-6,夹杂物的总数量、总面积和平均半径减小。适当提高Al2O3含量或添加CaF2,减少MgO含量,可以显著提高炉渣吸附夹杂物的速度和能力。低碱度渣精炼的钢液中夹杂物成分含有≥20%SiO2,塑性较好,夹杂物的尺寸为15~20μm。高碱度渣精炼的钢液中典型的夹杂物是氧化铝和铝镁尖晶石等脆性夹杂物,尺寸≤5μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号