共查询到20条相似文献,搜索用时 78 毫秒
1.
针对传统神经网络在负荷预测中精度欠佳、预测速度较慢的问题,提出一种基于注意力机制、变分模态分解和改进的深度双向门控循环单元短期负荷预测模型。该模型首先通过变分模态分解算法将负荷数据分解,以降低原始负荷数据的复杂度。然后:针对传统分解加预测组合模型存在参数多、模型复杂的问题,基于权值共享的思想建立改进的深度双向门控循环单元神经网络;引入注意力机制来突出关键因素的影响,通过注意力权重深度挖掘负荷数据存在的规律。最后,以中国某地区的负荷数据作为实例,通过与传统预测模型进行对比得出,本文所提模型在精度和速度方面均有一定的提升。 相似文献
2.
为提高负荷预测精度,考虑了历史负荷本身内在规律及外部影响因素,提出一种基于变分模态分解(variational modal decomposition,VMD)–卷积神经网络(convolutional neural networks,CNN)–双向门控循环单元(bi-directional gated recurrent unit,BIGRU)混合网络的短期负荷预测方法,改善了训练时长和预测效果。通过仿真分析验证了所提方法的有效性,且该方法与其他模型相比有更高的负荷预测精度和更强的鲁棒性,能够提高电力系统短期负荷预测的精确度。 相似文献
3.
针对短时交通流时间序列非平稳性、空间相关性和时间依赖性的特点,为提高短时交通流预测模型的预测精度和收敛速度,该文提出了一种基于改进的变分模态分解(VMD)、图注意力(GAT)网络和门控循环单元(GRU)网络的交通流量组合预测模型。首先,利用互信息熵(MI)改进的变分模态分解算法,将交通流量时间序列分解成一系列调幅调频信号子序列,降低了时序信号的非平稳性,提高后续预测模型的预测精度;然后,将其输入图注意力网络,捕捉路网邻近节点的交通流量对中心预测节点交通流量不同程度的影响,从而实现交通流量序列的空间相关性建模,进一步提高模型预测精度;接着,将交通流量分量子序列分别送入门控循环单元网络,捕捉其时间依赖性,并使用改进的RMSPRop优化算法迭代寻优,在提升优化算法收敛速度的同时提高了模型的预测精度;最后,结合各分量子序列的预测值,作为预测模型的最终输出。实验采用RTMC系统交通数据,结果表明,该文提出的改进VMD-GAT-GRU时空融合组合预测模型相较于LSTM、GCN和GAT基准模型,平均绝对误差(MAE)分别降低9.35、4.12、4.09,平均绝对百分比误差(MAPE)分别降低16.4... 相似文献
4.
较高的随机波动性使得风电功率的预测十分困难。为改善风电功率预测的效果,建立了一种基于变分模态分解(variational mode decomposition,VMD)、改进局部自注意力机制(Improved Local Self-Attention,ILSA)和门控循环单元网络(gated recurrent unit,GRU)的短期风电功率预测方法。使用VMD分解将原始风电功率序列分解为中心频率不一的子模态;对各子模态的中心频率分别建立具有不同高斯偏置优化窗口大小的ILSA模型,并改进其注意力分数公式以更有效地提取信息;采用GRU模型进行风电功率预测,并对各预测序列进行重组,得到最终的预测结果。实验结果表明,相比于各传统模型,所提改进方法能有效提高风电功率预测精度,且对于低频分量有更高的拟合度。 相似文献
5.
精准的风电功率预测结果可保障电网在安全稳定运行条件下提高风电并网容量。为提高风电功率预测精度,融合时间序列分解技术、机器学习及启发式算法提出一种风电功率双层组合预测模型。首先,构建经验模态分解技术和长短期记忆神经网络相结合(empirical mode decomposition combined with long short term memory network, EMD-LSTM)的预测模型。同时,构建变分模态分解技术、模拟退火算法及深度置信网络相结合(variational mode decomposition, simulated annealing combined with deep belief network,VMD-SA-DBN)的预测模型。并将已构建的EMD-LSTM及VMD-SA-DBN模型作为组合预测模型上层的基础预测模型。其次,利用极端梯度提升算法构建下层预测模型,并将上层2个基础预测模型的预测结果输入到下层预测模型,以得到最终的预测结果。最后,利用实测数据对此算法的有效性进行验证。证明所提出的双层组合预测模型较单一预测模型具有更高的预测精度。 相似文献
6.
水电机组状态参量具有小样本、非线性和非平稳性等特点,传统预测理论很难对其实现状态趋势预测,考虑从多角度优化预测算法,建立了基于时间序列的组合预测模型。本研究利用小波变换理论提取信号的细节特征,将机组状态参量分解为非线性的趋势项和平稳性的波动项,分别利用最小二乘支持向量机(LSSVM)理论和自回归(AR)模型进行趋势预测,利用加法原则重构信号实现水电机组状态参量的趋势预测。取某电站振动状态序列进行实例计算,结果表明预测值与实测值基本一致,具有较高的预测精度。研究结果将对水电机组的状态预警起到一定的推动作用。 相似文献
7.
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。 相似文献
8.
针对短时交通流量序列的非平稳性和随机性的特征,为提高短时交通流预测精度和收敛速度,提出一种基于自适应变分模态分解(VMD)和结合注意力机制层的双向长短时记忆网络(BiLSTM)的组合预测模型。首先,使用自适应变分模态分解将时空交通流量序列分解为一系列有限带宽模态分量,细化了交通流信息,降低了非平稳性,提升了建模的精确度;其次,利用结合注意力机制的双向长短时记忆网络挖掘分解后交通流量序列中的时空相关性,从而揭示其时空变化规律,从而进一步提升了建模精确度,并且利用改进Adam算法进行网络权值优化,以加速了预测网络的训练收敛速度;最后,将各模态分量预测值叠加求和作为最终交通流预测值。实验结果表明,使用模态分解的预测模型预测性能明显优于未使用模态分解的预测模型,同时自适应VMD-Attention-BiLSTM预测模型相较于EEMD-Attention-BiLSTM预测模型,均方根误差降低了47.1%,该组合预测模型提升了预测精度,并且能够快速预测交通流量时间序列。 相似文献
9.
针对短期电价预测的复杂性和精确度较差的问题,本文提出一种基于注意力机制的卷积神经网络和双向门控循环单元网络的短期电价预测模型。该模型将历史电价数据经过数据预处理后作为输入,首先利用卷积神经网络提取历史电价序列中的特征;其次,将提取的特征向量构造成时间序列输入到双向门控循环单元网络,充分挖掘特征内部的变化规律进行训练;然后,引入注意力机制来突出重要信息的影响并赋予权重,利用注意力机制对双向门控循环单元网络每个时间步的输出进行加权求和;最后,在全连接层通过激活函数计算输出最终预测值。通过实例验证了本文所提模型的准确性。 相似文献
10.
针对电力现货价格存在的高波动性、非线性特征的问题,采用变分模态分解(VMD)和WOA-ATT-BiLSTM相结合的方法实现了短期电价预测。首先使用VMD将原始电价序列分解成多个相对平稳的子序列,然后采用结合注意力机制的ATT-BiLSTM来提取电价子序列中的特征信息并进行预测,同时引入鲸鱼优化算法(WOA)优化ATT-BiLSTM的超参数来提高预测精度,最后为验证方法的有效性,使用了法国电力市场的数据进行实验比较。结果表明,基于VMD和WOA-ATT-BiLSTM模型的平均绝对百分比误差(MAPE)为2.91%,均方根误差(RMSE)为1.65欧元/MWh,平均绝对误差(MAE)为1.29欧元/MWh,相较于其他对比模型具有更准确的预测效果。 相似文献
11.
针对水电告警事件传统诊断方法存在效率低下、准确率不足等缺陷,设计了一种融合先验知识的数据增强方法和基于双向简单循环单元网络的层级注意力深度学习框架。针对水电告警规则不完善的问题,采用隐含狄利克雷分布-序列推理增强模型构建告警信号与告警特征间的映射机制;结合该水电告警先验知识提出改进隐含狄利克雷分布方法增强样本数据,最终由层级注意力模型学习样本特征并输出诊断结果。测试算例为某水电集控中心的实际告警数据,测试结果表明,所提方法可在低资源训练环境下实现快速和高准确率的水电告警事件诊断。 相似文献
12.
13.
充电截止电压是大多数电动汽车用户充电都会经历的电压点。针对传统安时积分法忽略初始容量误差和电池老化等一系列待优化的问题,提出了双层集成极限学习机(extreme learning machine, ELM)算法,实现锂离子电池充电截止电压下的荷电状态(state of charge, SOC)和健康状态(state of health, SOH)联合估计。首先,提取易测的电池健康特征(health indicator, HI),采用集成极限学习机映射HI及充电所需时间与SOH之间的关系。其次,用测得的HI估计难以在线测量的充电所需时间,对充电截止电压下安时积分法的SOC进行在线修正。该方法充分考虑了电动汽车用户初始充电状态的不确定性,指导电动汽车用户合理充电。此外,通过选择合适的集成ELM模型集成度,解决了单个ELM模型输出不稳定的问题。最后,选用NASA和CALCE数据集进行实验验证。验证结果表明,锂离子电池充电截止电压下SOC的估计均方根误差均小于1.5%,集成ELM相比于其他常见算法具有较高的训练、测试精度和较短的预测时间。 相似文献
14.
为了打破无线传感器网络的能量瓶颈,考虑无线充电效率对充电距离的敏感性,提出一种基于机器学习的自适应双模式设备协同调度的无线充电方案。首先,基于剩余能量、能耗以及充电效率来定义节点状态,提出一种计及节点状态的自适应阈值选择充电算法。然后设计改进式遗传算法,以最大化能量效用为目标为各节点选择合适的充电模式。此外,为进一步降低充电算法时间复杂度,利用基于支持向量机的机器学习方法学习上述充电模式切换机制,构建节点状态智能预测模型。仿真结果表明,所提算法可在保证较低充电时延的基础上,有效提升多无线充电设备的能量效用,增强传感网络的可持续性。 相似文献
15.
针对电力大数据存在数据随机缺失进而降低长短期记忆模型(Long Short-term Memory, LSTM)预测准确率的问题,本文提出了一种基于改进LSTM的电力设备状态融合预测模型。该模型首先对状态数据进行缺值检测和平稳分析,根据历史数据利用差分整合移动平均自回归模型(Autoregressive Integrated Moving Average model, ARIMA)对缺失的数值进行预测,并将预测的数值补充至相应的缺失位置;然后将新的完整数据输入到ARIAM模型和改进LSTM模型中以获取两种预测值;最后根据改进LSTM模型的学习准确率和ARIAM模型的拟合度对预测值进行权重分配,并在此基础上进行状态趋势融合预测。为了验证本文模型的普适性和预估准确性,选择电力负荷数据开展实验,结果表明:基于改进LSTM的电力设备状态融合预测模型在数据完整情况下的预测准确率比ARIAM和LSTM分别提高了52%和25% ,在数据缺失情况下的预测准确率分别提高了44%和57%。 相似文献
16.
17.
为了减少光伏系统接入电网产生的不利影响,并对预测光伏功率输出进行研究,提出了一种基于数据中潜在季节类别的混合深度学习模型。整个模型分为三个阶段,即聚类、训练和预测。在聚类阶段,采用相关分析和自组织映射来选择历史数据中相关性最高的因素。在训练阶段,将卷积神经网络、长短期记忆神经网络和注意力机制相结合,以构建用于预测的混合深度学习模型。在预测阶段,按测试集的月份选择分类的预测模型。实验结果表明,该实验方法在7.5 min内的间隔预测中具有较高的准确性。 相似文献
18.
随着新能源发电的快速发展,大规模风电场与电网相互作用引起的次同步振荡问题不断凸显,对次同步振荡进行预测并采取预防性控制措施具有重要意义.为此,提出了一种基于机器学习可解释代理模型的风电并网系统次同步振荡的在线预测和优化控制方法.采用Prony算法分析电网小扰动过程以辨识系统阻尼水平.建立了基于梯度提升树模型的系统阻尼评... 相似文献
19.
针对工业生产中滚动轴承剩余使用寿命(RUL)预测任务中数据挖掘不足导致预测精度低的问题,提出了一种多通道融合的滚动轴承剩余寿命预测方法。该方法通过互补集合经验模态分解(CEEMD)对原始振动信号进行降噪化处理和特征增强并将其作为模型输入;构建三通道网络模型,引入3种不同的神经网络:时间卷积网络(TCN)、卷积长短时间记忆网络(ConvLSTM)、双向门控循环单元神经网络(Bi-GRU),从时序、空间、感受野等多维度对特征进行差异化提取;在结构基础上添加多头注意力机制(multi-head attention mechanism, MA),重新调整网络输出权重、加快模型收敛速度;最后,设计一个特征融合输出模块,实现对滚动轴承剩余寿命预测。在两种数据集上进行实验验证,并与其他文献中先进模型进行对比。结果表明,所提模型能够更准确地捕捉轴承寿命退化曲线并且在多种评价指标上均优于对比模型。 相似文献
20.
提出一种基于PMU 对发电机实时测量功角来预测电力系统暂态稳定性的方法。通过采集功角数据,用多项式逼近去快速预测它未来的变化,同时为提高精度采用智能动态修正,然后判断多项式是否存在极值,若存在可预测系统首摆稳定,反之则不稳定。仿真结果表明,该方法对首摆稳定性的预测是准确和有效的。 相似文献