共查询到18条相似文献,搜索用时 62 毫秒
1.
以原状磷石膏(RPG)为基材,通过单因素实验研究了原状磷石膏(RPG)与β-半水磷石膏(HPG)相对掺量以及生石灰、水泥、硅灰3种掺合料对磷石膏基复合胶凝材料(PGBM)抗压强度、抗折强度及软化系数的影响规律以及作用机理。结果表明:HPG、生石灰、水泥、硅灰相对掺量的增加均能有效提高PGBM的强度及软化系数,其中硅灰的作用最为明显。但是,当生石灰和水泥的掺量(以质量分数计)分别大于4%和6%时,对PGBM耐水性能的改善不明显。当RPG与HPG相对掺量(质量分数比)为7∶3,生石灰、水泥、硅灰掺量(以质量分数计)分别为4%、12%、5%时,试件28 d抗压强度和软化系数分别可以达到26.29 MPa和0.79。微观分析表明:各掺合料主要通过水化产物填充率影响RPG颗粒之间的接触强度,进而对PGBM的强度和耐水性产生影响。 相似文献
2.
以未经处理的原状磷石膏制备磷石膏基复合胶凝材料,测试磷石膏基复合胶凝材料的力学性能,考察生石灰的掺量、水灰比以及成型压力对磷石膏基复合胶凝材料力学性能的影响。结果表明:当生石灰掺量为4%时,磷石膏-矿渣复合胶凝材料具有较好的力学性能,矿渣微粉对磷石膏-粉煤灰复合胶凝材料的力学性能有增强作用。对于磷石膏-矿渣-炉渣复合胶凝材料,当成型压力超过3 MPa时,制备的材料力学性能明显下降。同浇注成型试样相比较,在5 MPa成型压力下的压实成型试样,材料孔隙率提高,特别对于200 nm以上孔所占体积分数来说,其所占体积分数要远远高于浇注成型试样,导致了材料微观结构劣化,力学性能变差。 相似文献
3.
为了促进磷石膏资源化利用,以磷石膏、无水石膏、钢渣和P·Ⅱ52.5水泥为原材料,通过复配方法制备磷石膏复合(PSGW)胶凝材料并对其水化胶结过程进行研究。结果表明,当磷石膏质量分数为35%、无水石膏质量分数为5%、钢渣质量分数为10%、P·Ⅱ52.5水泥质量分数为50%时,制备出的PSGW胶凝材料3 d抗折强度为4.9 MPa、抗压强度为35.3 MPa; 28 d抗折强度为6.9 MPa、抗压强度为51.5 MPa、软化系数为0.88,满足P·O42.5 R等级要求。通过对PSGW胶凝材料进行XRD、FT-IR和SEM表征分析发现,该体系水化产物主要为棒状钙矾石、板块状水化硅酸钙、氢氧化钙和重结晶的二水硫酸钙。 相似文献
4.
5.
磷石膏胶凝材料的生产 总被引:8,自引:0,他引:8
介绍多种生产磷石膏胶凝材料的工艺路线。提出我国磷石膏胶凝材料应以生产α半水石膏为宜。研究工作的重点应努力提高工艺的技术经济指标,以增强其与天然石膏的竞争力。 相似文献
6.
研究了外加剂对磷石膏基复合胶凝材料性能的影响.通过单因素实验考察了外加剂CaCl2 (CC)、Na2SO4(NS)、NaF(NF)和水玻璃(NSO)的不同掺量对复合胶凝材料性能的影响,通过正交试验得到了外加剂复配的最佳方案,即有CC为0.6%,NS为0.2%,NSO为0.6%,NF为0.3%.正交优化组的3d和28 d的抗压强度为35.96MPa、42.88 MPa,其强度分别提高了19.27%和20.89%.采用XRD和SEM等方法分析了复合胶凝材料的水化产物组成和微观形貌.分析结果表明外加剂不仅能加快磷石膏基复合胶凝材料的水化反应进程,还可以生成更多更致密的水化产物,使其结构更加紧密,提高了复合胶凝材料的力学性能. 相似文献
7.
采用磷石膏为主要原材料,与适量活性炭和粉煤灰混合后煅烧分解,制备新型高强复合胶凝材料.通过正交试验研究煅烧温度、保温时间、活性炭和粉煤灰掺量对新型胶凝材料中三氧化硫含量和抗压强度的影响.结果表明:当煅烧温度为1200℃,保温时间为30 min,活性炭掺量为10%,粉煤灰掺量为5%时,所制得胶凝材料的3d、28d抗压强度分别为46.35 MPa、92.70 MPa.该条件下,新型胶凝材料中三氧化硫含量为11.60%,煅烧过程中形成C2S、C3S及C3A等具有活性的矿物成分,28 d水化产物中出现氢氧化钙和钙矾石.与磷石膏制硫酸联产水泥工艺相比,该方法能耗低,工艺流程简单,熟料抗压强度高,可作为磷石膏资源化利用的新途径. 相似文献
8.
9.
一、前言随着我国陶瓷工业和建筑行业突飞猛进的发展,对发展石膏工业亦就显得尤为重要。目前全国各石膏产区生产的半水石膏的产品质量,普遍存在各项技术指标极不稳定状态。其主要反映在:凝结时间、机械强度、吸水性能、颗粒度等方面。然而,为使石膏工业能更好地生产出优质石膏胶结材料,以适应各地厂家的需要。笔者作为从事 相似文献
10.
11.
采用水泥、矿渣粉、粉煤灰和减水剂对磷石膏进行改性。最终得到的磷石膏基复合胶凝材料的强度为原状磷石膏的2倍,软化系数从0.5提高至0.8。磷石膏基复合胶凝材料的比强度和孔隙率之间存在明显的线性关系,随着孔隙率的减小比强度增加。通过扫描电镜(SEM)对磷石膏基复合胶凝材料微观形貌的演变过程进行表征,发现随着矿渣粉、水泥、粉煤灰和减水剂的掺加,基体由疏松转变为致密;主要的水化产物二水石膏从针状转变为棒状或片状,并且出现了水化硅酸钙(C-S-H)凝胶,其填充于体系内部的孔隙并将二水石膏连成整体。利用X射线衍射(XRD)分析和傅里叶变换红外吸收光谱(FT-IR)测试对水化产物的微观结构进行研究。结果表明,复合体系中的主要产物为二水石膏,但是由于可用水量的减少,体系中仍剩余少量磷石膏未水化。 相似文献
12.
磷石膏基水硬性胶凝材料是近几年发展起来的一种以磷化工业副产物磷石膏为主要原料的新型建筑材料。与传统硅酸盐和矿渣水泥相比,磷石膏无活性不能直接作为胶凝材料,使用前必须对其进行改性。针对目前磷石膏基胶凝材料凝结时间长、早期强度低等缺点,研究了材料组成配比及外加剂对凝结时间和早期强度的影响,获得了磷石膏基胶凝材料的改性方法。当矿渣粉(KF)和硅基纳米粉末(WS)质量比为3∶17,水玻璃(NS)、富铝盐(NA)和高效聚羧酸减水剂(JS)的质量分数分别为0.3%、0.7%和0.3%时,可将其初凝时间控制在130~260 min、终凝时间控制在280~600 min;胶砂早期抗折强度3 d达3.5 MPa以上、7 d达5 MPa以上;早期抗压强度3 d达20 MPa以上、7 d达35 MPa以上。改性后的磷石膏基胶凝材料可替代25%~40%及以上普通硅酸盐水泥应用于建筑材料领域。 相似文献
13.
海工高性能混凝土用复合胶凝材料的试验研究 总被引:6,自引:0,他引:6
在调查分析海工混凝土工程实例的基础上,试验研究了硅酸盐水泥中掺入矿粉、粉煤灰、硅灰等混合材料对海工混凝土性能的影响。研究结果表明,在硅酸盐水泥中掺加矿粉、粉煤灰、硅灰等混合材料可以改善海工混凝土的综合性能。矿物混合材料的复合掺入比单独掺入能更好地改善混凝土抗Cl^-侵蚀性能。海工专用复合胶凝材料生产时宜尽可能地采用多种混合材料。 相似文献
14.
15.
16.
为制备大掺量磷石膏基复合胶凝材料,在确定主要水化产物类型的基础上,通过计算临界钙矾石膨胀破坏的边界条件,确定各组分最佳掺量范围,研究其对复合胶凝材料力学性能、干缩性能的影响,并通过X射线衍射(XRD)、扫描电镜(SEM)等测试方法研究水化产物的组成及发展规律。研究结果表明:通过理论配料计算,矿粉掺量为50%(质量分数)时,最大磷石膏掺量为26.3%(质量分数),最小熟料掺量为23.6%(质量分数)。最佳配比组28 d胶砂抗压强度为45.2 MPa,线膨胀率小于0.04%;对比组28 d抗压强度仅有36.4 MPa,线膨胀率远大于0.04%。XRD、SEM表征结果表明,磷石膏基复合胶凝材料的水化产物主要是钙矾石(AFt)和水化硅酸钙(C-S-H)凝胶,氢氧化钙几乎反应完全;对比组钙矾石生成量远大于最佳配料组,微观结构存在大量裂缝。这说明理论配料计算可以有效用于磷石膏基复合胶凝材料的配比优化。 相似文献
17.
18.
This paper describes the research done in order to valorise the biomass ash and evaluate its use as supplementary cementitious material (SCM) in the cement industry. The biomass ash samples used in this study were collected from three different power plants. The characterisation of the ashes as SCMs was performed after two different valorisation processes: (i) a vitrification process in order to obtain a new material with high hydraulicity and (ii) an easy de-alkalisation process in order to reduce the alkali content. The results of this work show that biomass ash derived from the combustion of woodchips and straw, properly treated, is characterised by pozzolanic activity and latent hydraulicity that could be exploited for the manufacture of low embodied energy concrete. The ultimate strength of mortars prepared using vitrified biomass ash becomes higher than that of the parent Portland cement after 28 days. 相似文献