首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

2.
张永智  郑颖 《包钢科技》2004,30(4):24-27
从转炉装入制度、造渣工艺、吹炼制度、后期处理、炉渣稠化和出钢几方面对冶炼重轨钢终点碳、温度、时间的控制进行了实际技术操作分析,论述了具体操作要点和实际效果.在保证高出钢碳的终点工艺下,操作关键是保碳前提下脱磷以及提温.通过优化转炉冶炼工艺,终点碳在0.06%~0.14%范围,能够保证终点磷和温度同时达标.  相似文献   

3.
《特殊钢》2017,(6)
根据脱磷氧化反应热力学研究了C-P-Fe耦合作用下的半钢脱磷平衡温度以及P-Fe作用下的转炉冶炼终点钢水脱磷平衡温度,提出了双渣法冶炼"脱磷窗口"的温度控制模型。并进行了46炉45t顶底复吹转炉双渣法脱磷试验,得出转炉一次倒炉钢液温度和终点温度对脱磷率和磷分配比的影响。通过理论计算和工艺试验分析得出,一次倒炉钢液温度控制在1400~1440℃,冶炼终点温度控制在1610~1650时,在目前铁水/%:4.41C,0.41Si,0.19Mn,0.128P,0.034S,1250~1300℃,终点钢水/%:0.08C,0.01Si,0.06Mn,0.009 0P,0.017S,1600~1660℃和相关工艺条件下,可使一次倒炉钢液脱磷率达到62.1%,终点脱磷率达到93.9%,终点磷含量由原0.0090%降低至0.0078%。  相似文献   

4.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

5.
 京唐公司炼钢系统铁水转炉预脱磷及“全三脱”铁水少渣冶炼工艺不断进行技术优化,脱磷转炉通过优化废钢尺寸、底吹枪数量和排布,半钢脱磷率可达到70%;铁水经过脱磷转炉脱硅、脱磷后,温度和磷质量分数更加稳定,为脱碳转炉少渣冶炼、自动化炼钢终点双命中率的提高提供了先决条件;脱碳转炉通过采用留渣操作、少渣冶炼技术、溅渣护炉技术后,自动化命中率达到90%以上,炉龄达到7 000炉以上;炼钢车间内渣钢、除尘灰、氧化铁皮等含铁物料实现了自循环消耗。采用“全三脱”铁水冶炼工艺,钢种质量进一步提高,超低磷与超低硫钢中(S+P+N)元素质量分数可稳定控制在0.009 5%以下。  相似文献   

6.
利用CFD软件对福建三钢闽光股份有限公司120 t转炉进行了氧气射流与三相流数值模拟,模拟结果表明:4孔脱磷氧枪的射流和化渣效果优于3孔脱磷氧枪,可保证化渣过程整个熔池的吹炼面积,促进脱磷反应的稳定高效进行;Ma=2.03优于Ma=1.98的脱碳氧枪,有利于转炉脱碳过程造渣,促进脱碳反应的进行.将新氧枪应用于福建三钢闽光股份有限公司现场的转炉冶炼,表明脱磷氧枪与脱碳氧枪综合脱磷能力强,可有效地控制熔池温度,达到了前期脱磷保碳、后期脱碳升温的生产需求.  相似文献   

7.
为了减少RH吹氧升温对洁净度的影响,汽车用钢在转炉冶炼过程中终点温度往往更高,从而导致转炉冶炼过程脱磷困难。通过对渣钢间脱磷热力学和动力学的计算,分析了转炉"留渣+双渣"工艺条件下磷分配比与钢液成分、炉渣成分以及温度的关系;结合工业生产试验,通过改变倒渣时间以及调整炉渣成分并对转炉冶炼过程钢液、炉渣连续取样,研究了转炉"留渣+双渣"工艺条件下的脱磷变化规律并得出了快速脱磷的工艺条件:吹炼开始加入小块废钢和轻薄料快速增加炉渣FeO含量并控制钢液温度的升高,吹氧量达到40%时倒出高磷含量炉渣;吹氧量为40%~80%期间增加炉渣FeO含量,减少炉渣返干,防止钢液回磷;转炉终渣碱度控制在4.0左右,终渣TFe质量分数在18%~20%和尽量低的出钢温度。  相似文献   

8.
《炼钢》2014,(3)
介绍了复吹转炉两炉双联法工艺在福建三钢闽光股份有限公司高碳钢生产中的应用,分别探讨了脱磷炉和脱碳炉的冶炼工艺参数和应用效果。脱磷炉顶吹供氧强度为2.0~2.7 m3/(t·min),冶炼时间7~10 min,石灰加入量平均为33.3 kg/t,平均炉渣碱度为1.51,底吹供气强度0.25m3/(t·min),温度控制在1 330~1 351℃。脱磷炉半钢平均磷质量分数为0.028 4%,平均碳质量分数为3.04%,平均脱磷率可达67.7%。脱碳炉采用少渣冶炼和高拉碳操作,供氧强度4.0m3/(t·min),底搅供气强度0.13 m3/(t·min),石灰平均加入量为13.8 kg/t,脱碳炉一倒钢水平均磷质量分数为0.013%,平均碳质量分数为0.21%,实现了低磷、高碳出钢的冶金效果。脱碳炉采用锰矿熔融还原工艺,锰矿加入量为4~6 kg/t,平均锰回收率可达46.3%,高拉碳条件下终点平均锰质量分数可达0.303%。复吹转炉两炉双联法冶炼工艺应用于高碳钢生产,实现了低磷、高碳出钢和锰矿的熔融还原,达到了预期的冶炼效果。  相似文献   

9.
为优化转炉冶炼工艺,对180 t顶底复吹转炉进行少渣低温高效冶炼试验,采用少渣冶炼工艺,即:兑铁→脱磷期冶炼→前期倒渣→脱碳期冶炼→终点出钢,实现了前期渣碱度平均1.91,前期脱磷率平均56.25%,后期渣碱度平均3.02,终点脱磷率平均90%,过程石灰、白云石消耗分别降低30%、20%以上。冶炼前期碱度1.5~2.0,熔池温度1 350~1 400℃更有利于铁水中磷的脱除;随着出钢温度和终渣碱度的提高,钢中磷含量增加。  相似文献   

10.
介绍了转炉炼钢脱磷反应的条件、半钢炼钢深脱磷工艺的要求。通过分析转炉脱磷反应的冶金条件,优化炉渣碱度、熔池搅拌强度、出钢温度等工艺参数,研究了半钢炼钢过程中三种低磷钢的控磷生产工艺,为转炉脱磷操作创造有利条件。采用单渣法操作,石灰加入量控制在26~50 kg/t,终点[P]控制在0.025%以内,终点[P]一次合格比例达到99.6%;采用双渣法操作,石灰加入量控制在50~70 kg/t,终点[P]控制在0.015%以内,终点[P]一次合格比例达到98.4%;采用脱磷-脱碳双联工艺,终点[P]控制在0.010%以内,终点[P]一次合格比例达到97.6%,为冶炼不同钢种的控磷操作提供了参考。  相似文献   

11.
采取转炉高拉碳出钢、双渣法冶炼、LF高碱度渣精炼、RH真空脱气、连铸加强保护浇铸及控制钢液过热度等措施,有效控制GCr15轴承钢中的氧、氮、硫、磷、钛等元素及夹杂物含量。试验表明:提高转炉出钢碳质量分数,有利于降低钢中的氧质量分数;随着炉渣碱度的升高,钢液中ω(O)大幅降低;GCr15轴承钢经过RH真空处理,钢液中的ω(TO)从0.002 8%下降到0.000 9%;双渣法冶炼可以提高转炉冶炼前期的脱磷率;LF精炼和连铸过程增氮,RH过程降氮;LF精炼过程是控制ω(Ti)的关键;夹杂物和碳化物都得到有效控制。  相似文献   

12.
结合电炉实际生产情况,初步分析了轴承钢保碳操作过程控制,在铁水消耗700 kg/t(钢),铁水磷质量分数小于0.130%条件下,分析了脱磷的热力学与动力学影响因素,利用冶炼前、中期低温的有利条件高效脱磷,后期控制用氧,实现冶炼终点碳质量分数在0.20%-0.70%之间,磷质量分数≤0.015%。  相似文献   

13.
《炼钢》2017,(6)
结合复吹转炉脱磷原理,针对鞍钢股份有限公司鲅鱼圈分公司炼钢部铁水平均w(P)高达0.12%的现状,综合考虑设备布置等因素,自主开发了复吹转炉的两炉法(脱磷炉+脱碳炉)冶炼极低磷钢种技术。在应用实践中,通过优化脱磷炉和脱碳炉的两炉法脱磷工艺参数,实现了深脱磷的目的。脱磷炉脱磷率高达85%,半钢平均w(P)=0.018%;脱碳炉冶炼终点钢水平均w(P)=0.001 2%;成品钢中平均w(P)0.002 0%,实现了极低磷钢的批量稳定生产。  相似文献   

14.
中磷铁水单渣法生产高品质管坯钢工艺研究   总被引:1,自引:1,他引:0  
研究涉及转炉的供氧、吹炼、造渣、终点控制和脱氧合金化等工艺技术,是一种在无先进的炉外精炼设备、无铁水预脱磷条件下采用中磷铁水"单渣法"冶炼高品质钢种的转炉冶炼方法,即"高保碳深脱磷"技术。经过两年多的工业性生产,获得了圆满成功,取得了巨大的经济和社会效益。  相似文献   

15.
赵斌  张娜  彭国宏  汪成义  吴伟  吴巍 《特殊钢》2023,44(2):52-55
结合某厂生产X80管线钢实际状况,对复吹转炉双联工艺的炼钢脱磷过程进行试验,研究转炉炉渣碱度和氧化性对脱磷的影响。结果表明:在铁水磷含量为0.118%和0.116%,脱磷炉和脱碳炉终点渣碱度CaO/SiO2分别为1.6~2.0、3.3~4.1,T.Fe含量分别为10%~15%、20%~35%的条件下,脱磷炉脱磷率最高达50.85%,平均为38.35%,终点脱磷率最高为95.69%,平均为94.88%,冶炼终点钢水磷含量控制在0.007%以下,最低0.005%,满足X80管线钢生产要求。  相似文献   

16.
曾建华  何为  陈永 《钢铁钒钛》2012,33(4):68-72
针对攀钢转炉半钢炼钢存在的成渣慢,脱磷率低,炉后回磷大的问题,通过对造渣工艺、供氧、复吹底部供气、终点控制等多方面技术的优化,提高了转炉脱磷率。生产实践表明,采用转炉单渣法冶炼平均脱磷率达到了90%以上,转炉终点磷可稳定控制在0.007%以下,炉后回磷在0.003%以下,满足了成品[P]≤0.010%的低磷钢的生产需求。  相似文献   

17.
针对钢厂铁水硅和磷含量较高的特点,采用转炉留渣双渣冶炼工艺以获得稳定的铁水脱磷率。吹炼3 min后加入石灰和污泥球等造渣材料,供氧强度0~3 min时为2.5m3/(t·min),3~4.5 min时为3.2m3/(t·min),温度控制在约1320℃。转炉一次倒渣后,继续吹炼,加入后期造渣料,待一氧化碳体积分数稳定时,适当提高氧枪枪位,促进化渣,并进行终点碳控制。试验结果表明:脱磷期铁水平均脱磷率为58.09%,脱碳期钢水平均脱磷率为85.56%;当半钢温度为1320℃炉渣碱度为2.0,炉渣TFe含量为18%时,在脱磷期能获得较好的铁水脱磷效果;当转炉钢水一倒温度为1580℃,终渣碱度为3.5,炉渣TFe含量为20%时,在脱碳期能够获得较好的脱磷效果;转炉终点[P]e/[P]r为0.90;试验中得到脱磷期和脱碳期炉渣的岩相组成适合铁水脱磷。  相似文献   

18.
本文叙述了半钢冶炼生产低磷钢的三种不同的操作方法。通过分析转炉脱磷反应的冶金条件,通过调整炉渣碱度、熔池搅拌强度、出钢温度等工艺参数,为转炉脱磷创造更为有利的条件。采用单渣法操作,石灰加入量控制在26-50kg/t,终点磷控制在0.025%以内,一次合格比例达到99.6%;采用双渣法冶炼低磷钢,石灰加入量控制在50-70kg/t,终点磷控制在0.015%以内,一次合格比例达到98.4%;采用脱磷一脱碳双联工艺,终点磷控制在0.010%以内,一次合格比例达到97.6%,为冶炼不同钢种的控磷操作提供了不同的工艺路径,实现了品种钢磷含量的分级控制。  相似文献   

19.
陈均  李盛  周明佳  杨森祥 《特殊钢》2020,41(6):32-35
针对攀钢转炉半钢冶炼中高碳钢增碳法增加成本降低钢水质量问题,采取了半钢增硅化学热补偿工艺,并根据对转炉脱磷热力学以及钢渣中磷富集规律,得出炉渣中磷的主要富集相为硅酸二钙。采用快速成渣、降低出钢温度等技术措施后,增加了炉渣中富磷相的比例,提高了脱磷效果。试验结果表明,新的热补偿工艺在提高半钢热源的同时,使得炼钢转炉成渣时间由4.1 min缩短到2.5 min,试验炉次转炉终点钢水碳含量平均为0.18%,温度平均为1653℃,炉渣TFe含量平均降低2.81个百分点,终点磷含量均控制在0.015%以内。  相似文献   

20.
通过对双联工艺生产汽车板中300 t脱磷转炉进行脱碳转炉热态渣循环工艺的研究,分析了热态渣循环利用过程对脱磷转炉脱磷效率以及辅料消耗的影响。结果表明,热态渣循环工艺能够充分利用脱碳转炉热态渣高CaO、低P_2O_5以及成渣快的特点,从而实现脱磷炉的高效脱磷。采用热态渣循环工艺以后,热态渣试验炉次钢种半钢终点磷质量分数平均降低0. 003 7%,平均脱磷率提升至63. 55%。试验炉次石灰使用量较常规炉次平均每炉降低2. 18 t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号