首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
对比分析了现有石化VOCs(挥发性有机物)废气治理方面的几种技术,介绍了低温重芳烃吸收-吸附-催化氧化工艺在某石化企业芳烃储罐及装船排气治理技术工业应用情况。废气治理装置的操作条件:低温重芳烃吸收液气比40~60 L/m3,吸收温度5~15℃,吸收塔和吸附罐操作压力0.18 MPa,吸附时间30 min,吸附罐解吸压力-0.095 MPa,废气进入催化氧化反应器的总烃的质量浓度为3 000~6 000 mg/m3,催化氧化反应温度350~410℃,反应器体积空速5 000~20 000 h-1。治理装置的净化气中非甲烷总烃的质量浓度均小于10 mg/m3,苯、甲苯、二甲苯浓度小于仪器最低检出限。净化气污染物排放浓度满足环保排放标准和企业相关排放指标要求。  相似文献   

2.
通过对装车排气达标治理技术对比分析,确定了低温柴油吸收-总烃均化-催化氧化工艺治理山东某石化企业汽油、喷气燃料装车排气。在吸收油流量15~20 m3/h、吸收温度8~15 ℃、吸收压力0.2 MPa、催化氧化反应温度 250~350 ℃及反应空速5 000~20 000 h-1的操作条件下,研究了低温柴油吸收、总烃均化、催化氧化过程对汽油及喷气燃料装车排气治理的效果,净化气中非甲烷总烃排放质量浓度小于20 mg/m3,苯、甲苯、二甲苯排放浓度低于检出限值,满足国家及地方标准排放要求。该装置的投资回收期约为5年,具有一定的经济效益和明显的环保效益。  相似文献   

3.
介绍了柴油低温临界吸收-碱液脱硫-净化气焚烧工艺在某炼油厂氧化脱硫醇尾气治理工业装置上的成功应用。该炼油厂氧化脱硫醇尾气中油气体积分数为10%~40%,有机硫化物总质量浓度达2 000 mg/m3以上,尾气含烃浓度高、污染性强、恶臭气味大,排放量为150 m3/h。氧化脱硫醇尾气经过柴油低温吸收-碱液脱硫净化后,排气中油气质量浓度小于25 g/m3,有机硫化物去除率大于99%,硫化氢的排放浓度小于10 mg/m3,尾气净化装置的油气回收率高达95%。排放气再进入焚烧炉燃烧,燃烧净化后排放气体中油气浓度低于50 mg/m3,装置年回收油气量502.7 t以上,达到了油气回收和恶臭治理效果,具有明显的环保效益和经济效益。  相似文献   

4.
介绍了炼油厂储罐挥发性有机物和恶臭废气排放概况及几种炼油厂储罐挥发性有机物和恶臭治理新技术,并给出了炼油厂储罐污染物浓度和罐顶废气排放量估算方法。通过加装罐顶气平衡连通管线、罐顶气进集气柜、控制罐内气体温度等技术可以减少罐顶气排放;酸性水、污油、粗汽油、粗柴油等储罐废气经过"低温柴油吸收-碱液脱硫-焚烧"技术处理,油气回收率可达70%~97%,硫化氢和有机硫化物去除率接近100%,焚烧烟气中总烃的质量浓度小于10 mg/m~3;油浆、对二甲苯等储罐废气经过"低温柴油吸收-脱硫均化-催化氧化"技术处理,油气回收率约76%,甲硫醇、硫化氢去除率接近100%,催化氧化净化气非甲烷总烃的质量浓度小于10 mg/m~3,苯、甲苯、二甲苯浓度低于检出限;油浆、沥青等储罐和沥青装车尾气经过"低温柴油吸收-脱硫均化-RTO"技术处理,油气回收率约46%,甲硫醇、硫化氢去除率接近100%,蓄热氧化净化气非甲烷总烃的质量浓度小于10 mg/m3,苯、甲苯、二甲苯浓度低于检出限。  相似文献   

5.
研究了炼油厂装车装船排放气组成和排放规律,对装载场合废气收集方式、引气控制、治理技术进行了分析和工业化试验研究。结果表明:装车装船逸散废气中非甲烷总烃浓度随装卸时间的延长而逐渐升高,废气收集采用引气式压力控制能实现流量自动控制;采用低温馏分油临界吸收-吸附技术对码头装船逸散废气进行回收治理,净化气中非甲烷总烃浓度低于6.1×10~3 mg/m~3,非甲烷烃总烃净化效率大于99.3%;采用低温馏分油临界吸收-催化氧化技术对装车栈台逸散废气进行回收净化治理,净化气中非甲烷总烃浓度不大于7.9mg/m~3,净化效率接近100%。  相似文献   

6.
总结了汽油、喷气燃料、苯乙烯等装车(船)挥发性有机物(VOCs)排放标准和油品装车蒸气的收集和输送技术,可知中国标准与国外最严标准相当或略严格,推荐顶部浸没式鹤管装车VOCs蒸气采用风机输送到处理装置。介绍了中国石化大连石油化工研究院(原抚顺石油化工研究院,简称FRIPP)开发的汽油、喷气燃料、苯乙烯等装车(装船)VOCs气体"低温柴油吸收"、"低温柴油吸收-总烃均化-催化氧化(AHCO-1)"、"低温柴油吸收-焚烧"等处理技术,甲醇、乙酸等化学品装车VOCs气体"水吸收-总烃均化-催化氧化(AHCO-2)"处理技术,以及汽油"油气冷凝-蓄热氧化(RTO)"处理技术。技术数据表明:汽油油气经过"低温柴油吸收",油气回收率可达97%以上;装车(船)VOCs气体经过回收和催化氧化、焚烧等处理,净化气总烃质量浓度小于20mg/m~3,合计总烃去除率达99%以上。  相似文献   

7.
上海某石化企业储罐及污水池排气采用低温柴油吸收-碱液脱硫-总烃均化-蓄热氧化工艺处理。在吸收油量20 m~3/h、吸收温度5~12℃、吸收压力0. 18 MPa、蓄热氧化反应温度670~820℃及氧化停留时间2~5 s条件下,净化气中非甲烷总烃排放浓度小于10 mg/m~3,苯、甲苯、二甲苯浓度小于低检出限,且净化气中SO2和NOx浓度均小于25 mg/m~3,满足国家及地方标准排放要求,具有明显的环保及社会效益。废气处理装置的实际运行能耗折算值约为22. 2 kg(标准油)/h,年运行费用约为138. 5万元。  相似文献   

8.
介绍了几种炼化行业挥发性有机物(VOCs)废气治理典型技术及应用实例。实例:(1)石化污水处理场隔油池、气浮池废气应用"脱硫及总烃浓度均化-催化氧化"技术处理,曝气池废气应用"洗涤-吸附"装置处理;(2)汽油装车油气应用"低温柴油吸收"技术处理,油气回收率大于95%;汽油低温柴油吸收装置净化尾气与喷气燃料装车油气应用"总烃浓度均化-催化氧化"技术处理;(3)中间油品罐和污水池VOCs废气应用"低温柴油吸收-碱液脱硫+总烃浓度均化-催化氧化"技术处理;(4)橡胶废气应用"预处理(冷凝、过滤)-催化氧化"技术处理;(5)氯苯、硝基氯苯装置和原料及产品储罐排放的VOCs废气应用"蓄热燃烧-氢氧化钠碱液吸收-活性炭吸附"技术集中处理。处理后的净化气中甲烷总烃、苯、甲苯及二甲苯等指标均符合国家排放标准。  相似文献   

9.
利用浅冷凝-膜分离技术,采用中海油天津化工研究设计院有限公司自主研发的膜材料及装置,对石化企业装车过程中产生的挥发性有机物(VOCs)气体进行处理。结果表明:膜入口处VOCs气体中非甲烷总烃质量浓度最高为50 000 mg/m3,在装置处理量为5 m3/h,运行163 h的过程中,出口处非甲烷总烃质量浓度降为6~40 mg/m3,非甲烷总烃去除率大于99.9%;膜入口处VOCs气体中非甲烷总烃质量浓度为42 290~105 710 mg/m3,运行270 d的过程中,出口气体中非甲烷总烃质量浓度为6~52 mg/m3,非甲烷总烃去除率高于99.9%,可满足GB 31570—2015和GB 31571—2015的排放要求。  相似文献   

10.
炼油污水处理场挥发性有机物(VOCs)和恶臭废气可分为高浓度、低浓度两类:高浓度废气来自提升池、均质罐、隔油池、气浮池(浮选池)、污油罐(池)等,非甲烷总烃浓度为500~40 000 mg/m3,总气量为1 000~10 000 m3/h(标准状态);低浓度废气来自曝气池、氧化沟、污泥脱水间,非甲烷总烃浓度为10~300 mg/m3,总气量为20 000~50 000 m3/h(标准状态)。中国石化抚顺石油化工研究院开发了适用于炼油污水处理场高浓度与低浓度废气联合处理的SWAT-1、SWAT-2工艺技术,在SWAT-1工艺中,高浓度废气采用“脱硫及总烃浓度均化-催化燃烧(氧化)”工艺处理,曝气池等低浓度废气采用“洗涤-吸附”工艺处理,低浓度废气饱和吸附剂用催化氧化排放的热气再生并返回催化氧化处理系统;而在SWAT-2工艺中,高浓度废气采用“低温柴油吸收-脱硫及总烃浓度均化-催化氧化”工艺处理。应用SWAT-1、SWAT-2工艺处理污水处理场废气,净化气非甲烷总烃浓度可小于50 mg/m3,最低小于10 mg/m3,苯、甲苯、二甲苯浓度低于检出限,臭气浓度小于20(无量纲)。  相似文献   

11.
宁波镇海炼化利安德化学有限公司环氧丙烷/苯乙烯(PO/SM)废气催化氧化装置采用WSH-2催化剂处理PO/SM主装置产生的废气,在废气量约85 000 m3/h、反应进口非甲烷总烃质量浓度2 800 mg/m3、氧质量分数2%~4%、反应器进口温度260~330 ℃的条件下,处理后的净化气体符合国家《大气污染物综合排放标准》(GB 16297-1996)和《恶臭污染物排放标准》(GB 14554-93)要求,该技术具有很好的推广意义。  相似文献   

12.
针对靖边气田某天然气净化厂硫磺回收装置尾气SO2排放不达标等问题,以提高H2S转化率、降低SO2排放量为目标,在传统Clinsulf-DO工艺的基础上,从工艺流程和催化剂方面进行优化设计,形成了双反应器选择性氧化硫回收工艺及尾气碱洗技术,并采用国产催化剂HS-35和HS-38进行催化反应。工业标定结果表明,改造后装置总硫转化率由原工艺的80.27%提升到94%以上,尾气中SO2的质量浓度降低到100 mg/m3以下,达到了新环保法规《石油炼制工业污染物排放标准(GB31570—2015)》的规定。较好的工业应用结果可为同行业低含H2S酸性气硫回收和尾气排放达标提供一定的参考。  相似文献   

13.
煤层气发电是煤层气利用的重要途径之一,但煤层气发电排放的高温尾气中含有大量的氮氧化物(NO_x),会对环境造成污染,需要对其进行脱硝处理,而高温烟气(约500℃)又不宜用V_2O_5/TiO_2蜂窝式催化剂进行直接脱硝处理。为此,在分析比较煤层气发电高温烟气与燃煤发电烟气差别的基础上,应用纳米组装和灌注法研制了GJ-HC-5型催化剂,并通过室内实验确定了脱除NO_x的最佳温度窗口(400~600℃)。之后,在某煤层气电厂进行中间试验,将发电机组高温烟气直接通入到SCR一体化装置进行脱硝处理,在SCR反应器进出口处连续监测,进口NO_x浓度约为620 mg/m~3,出口监测浓度约为20 mg/m~3,对烟气中的NO_x的脱除率始终保持在90%以上。试验结果表明,所研制的高温SCR催化剂符合实际烟气温度条件,且制备方法简单,是一种可行的煤层气发电高温烟气的脱硝方法。  相似文献   

14.
利用Aspen plus软件对石脑油加氢装置中酸性气脱硫工艺进行稳态模拟优化,在稳态优化的基础上利用Aspen dynamics研究了在流量、压力、液位控制结构下酸性气流量和组成波动时的运行情况.从稳态和动态两方面确定了最优操作参数,结果显示:当酸性气流量增至2 200 m3/h和降至800 m3/h,硫化氢体积分数波...  相似文献   

15.
为了降低重油催化裂化(RFCC)装置再生烟气中SO2的含量,以减轻后续烟气脱硫除尘装置的处理负荷,中国石油化工股份有限公司广州分公司采取投加RFS09硫转移剂的方法来降低烟气脱硫除尘装置入口的SO2浓度。工业应用结果表明:投用硫转移剂后,再生烟气中SO2浓度明显降低,含硫外排水COD下降,烟气脱硫除尘装置入口烟气SO2质量浓度由3.56 g/m3降至2.28 g/m3;硫转移剂的使用并未对汽油、液化气等主要产品的收率及平衡剂质量造成不利影响。  相似文献   

16.
四川盆地南部地区下志留统龙马溪组页岩气资源丰富,但地质、工程条件复杂,页岩气规模效益开发面临着严峻的挑战。为了解决川南地区页岩气"部署设计难度大、优质储层钻遇率提高难度大、复杂缝网形成难度大、单井产量和单井估算最终采收量(EUR)提高难度大"等问题,通过系统梳理和总结10余年的页岩气勘探开发成果,形成了适用于该区的页岩气地质工程一体化高产井培育方法,并开展了现场试验和推广应用。研究结果表明:①所形成的三维地质建模、三维地质力学建模、复杂缝网模拟和产能数值模拟等4项关键技术,为该区页岩气井全生命周期的方案设计、现场实施、实时调整提供了重要的决策依据和指导,有效提高了页岩气单井产量和EUR;②实施地质工程一体化高产井培育方法,可以大幅度提高长宁—威远国家级页岩气示范区页岩气单井产量,其中长宁区块井均测试日产量由10.9×10~4 m~3提高到26.3×10~4 m~3、最高测试日产量达到62×10~4 m~3,威远区块井均测试日产量由11.6×10~4m~3提高到23.9×10~4 m~3、最高测试日产量达到71×10~4 m~3;③推广应用地质工程一体化高产井培育方法,可以实现高产井的"复制",培育了一批EUR超过1.5×10~8 m~3、部分超过2×10~8 m~3的高产井,其中泸州区块4口深层页岩气井,井均EUR达1.98×10~8 m~3。结论认为,所形成的地质工程一体化页岩气高产井培育方法,是破解页岩气规模效益开发难题的有效措施,可以为国内外非常规油气藏的规模效益开发提供借鉴。  相似文献   

17.
中国页岩气开发进展、潜力及前景   总被引:1,自引:0,他引:1  
中国作为北美之外最大的页岩气生产国,随着页岩气勘探开发的持续快速推进,在埋深3 500 m以浅的海相页岩区已经建成200×10~8 m~3的页岩气年产规模。未来全国埋深3 500 m以浅页岩气能否继续稳产上产、埋深超过3 500 m的深层页岩气的开发潜力如何,既是评价和判断未来中国页岩气资源开发潜力和发展前景等的前提,也是决定能否在川渝地区建成"天然气大庆"的关键。为此,通过总结中国页岩气理论认识和工程技术发展成果,分析页岩气资源的开发潜力,预判了未来的发展前景。研究结果表明:①在页岩气理论体系方面,明确了海相深水陆棚笔石黑色页岩形成条件及页岩气富集机理,建立了"甜点区"和"甜点段"地质理论,初步构建基于"人造气藏"的页岩气开发理论,建立了四川盆地南部地区深层优质页岩厚度大、保存条件好、发育微裂缝与超压的页岩气富集高产模式;②在页岩气工程技术方面,水平井多段压裂等关键工程技术实现了跨代发展,支撑了中国仅用6年时间就实现了页岩气年产100×10~8 m~3、其后又用2年时间实现了年产200×10~8 m~3的历史性跨越;③在页岩气资源方面,明确了四川盆地中浅层海相页岩气是产业发展的"压舱石",而深层海相页岩气则是未来产量增长的主体,以川南海相页岩为重点具备还可探明页岩气地质储量超6×10~(12) m~3的资源条件,可以支持页岩气产量持续快速增长。结论认为,通过加快对于埋深3 500~4 000 m页岩气资源的开发,2025年全国页岩气年产量可以达到300×10~8 m~3;考虑到埋深4 000~4 500 m页岩气资源开发突破难度较大,2030年页岩气有望落实的年产量为350×10~8~400×10~8 m~3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号