首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷石膏和脱硫石膏是堆存量最大的工业固废石膏,将其转化为半水石膏作为建筑胶凝材料是最主要的资源化利用途径。采用蒸压法制备α-半水石膏,以磷石膏和脱硫石膏为原料,天然石膏作为对照组,探究了十二烷基苯磺酸钠(SDBS)、硫酸铝[Al2(SO4)3]、复合转晶剂CM(硫酸铝、柠檬酸钠)对α-半水石膏晶体形貌的调控作用及其强度的影响。结果表明,于135℃下蒸压5 h,3种石膏均能稳定制备α-半水石膏,3种转晶剂对于半水石膏物相组成无影响,同时0.4%(质量分数)CM能够有效降低晶体的长径比;通过t检验法检测,转晶剂对脱硫石膏、天然石膏制备的α-半水石膏的抗压强度有显著性增强作用,α-半水石膏的抗压强度增加2倍以上,分别为13.59 MPa和17.45 MPa。而转晶剂对以磷石膏为原料制备的α-半水石膏的强度没有明显作用。脱硫石膏和天然石膏在0.4%CM的调控下晶体长径比降低,抗压、抗折强度显著提升,而磷石膏由于其杂质影响,转晶剂的作用效果不明显,研究结果可为工业石膏的工业化生产提供一定的理论指导。  相似文献   

2.
转晶剂是磷石膏制备α半水石膏的重要影响因素.利用固体废弃物磷石膏制备高强α半水石膏,实验采用了半干法的工艺,研究了不同转晶剂单掺和复掺对高强α半水石膏晶粒的生长及其水化硬化后力学强度的影响,通过扫描电镜(SEM)分析了高强α半水石膏内部晶粒生长情况和水化后结晶情况.实验结果显示:单一转晶剂对α半水石膏的力学性能影响并不显著,相对来说柠檬酸钠的影响较为明显.而转晶剂复掺效果最好,当掺入的柠檬酸钠与硫酸铝的比例为1∶1,掺量各为0.06%时,得到的晶粒完整,水化硬化后试块的抗折强度为6.7 MPa,抗压强度为25.65 MPa.  相似文献   

3.
在常压,Ca(NO3) 2-KCl溶液中,以脱硫石膏为原料,研究了聚合物大分子透明质酸转晶剂浓度和pH值对α-半水石膏晶体生长的影响.实验结果表明,pH值为5.5,转晶剂透明质酸浓度为3.0g·L-1时,制备的α-半水石膏为规整度高、分散性好的六边短柱状晶体.α-半水石膏水化硬化浆体力学性能测试显示,浆体抗压强度和抗折强度随着α-半水石膏晶体长径比减小和规整度的增加而逐渐变大,其最大值分别为58.8 MPa和28.5 MPa,属于高强石膏.  相似文献   

4.
以经盐溶液预处理的磷石膏为原料,以乙二胺四乙酸(EDTA)和顺丁烯二酸酐为复合转晶剂,采用蒸压法制备α半水石膏。借助扫描电镜(SEM)、X射线衍射(XRD)分析研究了复合转晶剂掺量、pH、蒸压温度对生成α半水石膏的晶体形貌、物相组成的影响。研究结果表明,复合转晶剂中EDTA的最佳掺量(质量分数)为0.4%、顺丁烯二酸酐的最佳掺量(质量分数)为0.3%,溶液最佳pH为7.5,最佳蒸压温度为140 ℃。在此条件下制得的α半水石膏结晶形态最好,呈短柱状,长径比接近1∶1。  相似文献   

5.
以简化生产工艺流程,降低生产成本为原则,研究开发了无转晶剂和有转晶剂的两种生产α型半水石膏工艺。其产品质量可达到:标准稠度低于40%,抗折强度高于10MPa,抗压强度大于30MPa。  相似文献   

6.
α型半水石膏的研制   总被引:3,自引:0,他引:3  
以简化生产工艺流程,降低生产成本为原则,研究开发了无转晶剂和有转晶剂的两种生产α型半水石膏工艺。其产品质量可达到:标准稠度低于40%,抗折强度高于10MPa,抗压强度大于30MPa。  相似文献   

7.
微波辐照下使用磷石膏制备半水石膏,通过分析固相产物结晶水含量、化学成分及晶体微观形貌来研究半水石膏随转晶剂掺量及反应时间的变化规律.研究表明:微波辐照下以磷石膏为原料制备半水石膏,在无转晶剂及单掺丁二酸转晶剂两种情况下,磷石膏主要成分二水硫酸钙向半水硫酸钙晶体的转化率随时间均呈先增大后减小的趋势;无转晶剂时,转化率在60 min时达到96%,半水硫酸钙晶体长径比为21;掺入丁二酸(质量分数为0.02%)时,转化率在90 min时达到96%,半水硫酸钙晶体长径比减小至1.5,且随着丁二酸掺量的增加,对半水硫酸钙晶体微观形貌的调控作用不断增强,晶体的长径比不断减小;EDS能谱及傅里叶红外光谱分析表明,微波辐照下丁二酸应该是通过改变半水石膏晶体比表面自由能的方式调控半水石膏晶体的生长.  相似文献   

8.
金纯  赵辉  江莉莉  任小明  蒋涛 《硅酸盐通报》2015,34(6):1504-1508
利用X射线荧光光谱仪分析了钛白石膏的成分,结果表明其主要成分是CaSO4·2H2O,其杂质主要成分是Fe2O3;采用水热法,以钛白石膏为原料,制备α半水钛白石膏;通过XRD和SEM,对其进行表征;探讨转晶剂和石膏浆料pH值对α半水钛白石膏晶型的影响,以及丁苯胶粉对α半水钛白石膏抗压强度的影响.结果表明,当pH=6,丁苯胶粉添加量为0.9%时,α半水钛白石膏用水量下降到34%,其抗压强度提高到52.8 MPa,提高了101%.  相似文献   

9.
磷石膏是磷化工企业湿法生产磷酸时排出的工业废渣,因含有大量磷、氟及碱金属盐等杂质,简单堆放填埋处理会带来占用耕地及污染环境等问题。目前最有前景和效益的处理方式是将磷石膏转为α半水石膏(α-HH),但磷石膏的可溶磷、共晶磷及可溶氟等有害杂质是影响磷石膏制备α-HH的主要障碍。因此磷石膏中有害杂质的预处理及α-HH晶体微观形貌调控措施是以磷石膏为原料制备α-HH的研究重点。本文全面综述了磷石膏的理化特性、有害杂质对石膏性能的影响及预处理措施、α-HH制备方法及晶体微观形貌调控等方面的研究现状,探讨了不同预处理措施及α-HH制备方法的优缺点,并对转晶剂调控α-HH晶体微观形貌的机理进行了总结,最后提出了下一步有待解决的问题。  相似文献   

10.
中国磷肥工业每年排放出约5000万t的二水磷石膏,这些磷石膏中以水份和P2O5为主的杂质含量过高限制了磷石膏的综合利用。本文提出用化学转晶法将二水磷石膏转化为半水石膏,回收其中的P2O5并且大大降低石膏中的水份含量,为磷石膏的利用找到了一条经济适用的途径。实验研究了H2SO4浓度、温度和液固比对二水磷石膏转化为半水石膏的影响,得出最佳的转晶工艺条件为H2SO4浓度12.25%,转晶温度95℃,液固比2.8∶1,在此条件下得到了纯度很高的半水-无水混合石膏。  相似文献   

11.
硫酸浓度对烟气脱硫石膏制备α-半水石膏的影响   总被引:2,自引:0,他引:2  
采用常压盐溶液法从烟气脱硫石膏中制备具有理想形态的高强α-半水石膏,并借助扫描电镜、DTA等测试手段分析硫酸浓度对α-半水石膏结晶形态转化的影响。研究表明:在温度、盐溶液种类、浓度、pH值、结晶习性改良剂和稳定剂的种类及掺量不变的前提下,硫酸浓度为15%时可加快α-半水石膏的生成且晶体形态为致密短柱状。  相似文献   

12.
13.
湿法净化磷酸副产半水石膏,晶体细小,含磷高,过滤难度较大,不仅影响生产效率,而且磷损失大,生产成本高。基于二水石膏具有易过滤、含磷低、品质高等优点,通过控制反应温度约60℃、液相SO3质量浓度约38 g/L、反应时间2 h等参数,将半水石膏转晶为二水石膏,所得石膏总磷、非水溶磷含量大幅度降低,湿法磷酸净化系统磷收率大幅度提升,可达95%左右。  相似文献   

14.
15.
通过分析磷石膏蒸压后样品的物相组成、相对结晶度、烘干抗压强度、微观形貌,研究了蒸压温度、保温时间、液固比、杂质等因素对磷石膏蒸压制备α-半水石膏的影响。结果表明:磷石膏蒸压后所得样品的烘干抗压强度与α-半水石膏晶体的相对结晶度呈正相关关系;在蒸压温度为130℃、保温时间为3~5 h、液固质量比为0.25条件下,所得α-半水石膏的相对结晶度高、烘干抗压强度大、晶体微观形貌完整且长径比小;磷石膏中的杂质会对蒸压样品的力学强度产生影响,将磷石膏水洗处理后,在蒸压温度为130℃、保温时间为3 h、液固质量比为0.25条件下,可制得2 h抗折强度为7.3 MPa、烘干抗压强度为32.8 MPa的α-半水石膏,该α-半水石膏符合JC/T 2038—2010《α型高强石膏》α30强度等级的要求。  相似文献   

16.
α-半水高强度石膏生产新工艺   总被引:8,自引:0,他引:8  
本工艺将α-半水石膏生产中的“水溶液法”和“蒸汽加压法”的优点巧妙地结合起来,用于二水石膏块矿的加工生产,形成了具有特色的“汽液结合法”工艺。工艺中利用“闪蒸原理”进行负压干燥,媒晶剂溶液循环使用,媒晶剂溶液的余热预热生料,使得生产能力及产品质量大为提高,能耗大幅度降低。  相似文献   

17.
以磷石膏为原料,采用常压盐溶液法制备α-高强半水石膏。通过控制反应温度、复合无机盐浓度、pH值和固液比,可以得到晶型为短柱状、长径比为1.4的半水石膏,其绝干抗压强度可达到80 MPa。该高强半水石膏与磷矿尾砂通过控制质量比、加水量和缓凝剂制成胶结填充体,其浆料凝结时间60 min,养护5 d抗压强度1.5 MPa,满足矿场强度要求。在高强半水石膏中加入一定量的发泡剂泡沫,可制得干密度450 kg/m~3、强度1.0MPa的门芯板。根据不同的空隙度,制作不同的模具,可以得到不同密度与强度的空心石膏砖,满足不同的应用需求。  相似文献   

18.
采用常压盐溶液法制备α-半水脱硫石膏,研究转晶剂柠檬酸在不同pH值条件下对α-半水脱硫石膏晶体形貌的影响.从产物晶体形貌、脱水速率、液相离子浓度等角度,研究了溶液pH值对柠檬酸调晶效果的影响规律.结果表明:柠檬酸调晶效果非常显著,在0.01%的低掺量下,α-半水脱硫石膏由棒状转变为长径比接近1∶ 1的短柱状晶体.pH值是影响其调晶效果最敏感的因素之一,在pH=3.5~4.8之间的酸性范围内,有利于结晶习性改良.  相似文献   

19.
脱硫石膏(FGD gypsum)作为一种固废,可经过高温煅烧制备建筑石膏,实现固废资源化利用。以脱硫石膏为原料,氧化钙和硫酸铝为复合转晶剂,在170℃下煅烧2 h制备建筑石膏,研究复合转晶剂的复合比例及掺量对建筑石膏力学性能的影响,并揭示其复合转晶机理。结果表明,当复合转晶剂掺量为1%(质量分数)、氧化钙和硫酸铝复合比例为1∶1(质量比)时,制备的建筑石膏力学性能最佳。水化后石膏块体致密性良好,水化产物呈相互交错的短柱状或纤维状。建筑石膏的2 h抗折和抗压强度分别为3.6和9.7 MPa,绝干抗折和抗压强度分别为6.8和23.5 MPa,满足《建筑石膏》(GB/T 9776—2022)中3.0级建筑石膏的要求。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号