共查询到20条相似文献,搜索用时 31 毫秒
1.
一、前言近七八年来,随着农村经济体制改革的深入,养猪业的集约化生产日趋发展。尤其是大中城市附近的郊县,结合菜篮子工程兴办了一批大中型鸡场和猪场,从而出现了大量禽畜粪便堆积,造成严重的环境污染。应用厌氧消化工艺建造大中型沼气集中供气工程,既能使粪便的污染得到控制,保护了生 相似文献
2.
3.
醋糟厌氧发酵特性的研究 总被引:3,自引:0,他引:3
以醋糟为厌氧发酵原料,分别进行了连续进料试验和全进全出料试验。连续进料试验结果表明,在每天进料量保持不变的情况下,日产气量稳定,平均产气率为0.918 m3/(m3.d),最高产气率可达1.111 m3/(m3.d)。经过计算可知,8.52 kg醋糟可产1 m3沼气。全进全出料发酵试验结果表明,醋糟厌氧发酵的体积上浮和膨胀非常明显。当进料浓度为4%时,料液最大膨胀体积为322.68 cm3,为发酵料液体积的28.8%。醋糟厌氧发酵具有降解速率快,滞留期短等特点。 相似文献
4.
在温度(55±1℃)和总挥发性固体浓度(2%)为固定参数,碳氮比(C/N)为可变参数的条件下,研究了构树和牛粪、餐厨垃圾、水稻秸秆分别进行混合发酵的产气性能。研究结果表明:与单一发酵相比,混合发酵均能提高甲烷产量,当构树与餐厨垃圾混合物的C/N为20时,可获得最高的累积产甲烷量(411.71 mL/g),比构树和餐厨垃圾单独发酵时的累积产甲烷量分别提高了45.45%和12.61%;构树与餐厨垃圾、牛粪、水稻秸秆进行混合发酵时,原料之间均存在协同作用,其中,构树与水稻秸秆在C/N为15的条件下进行混合发酵时,协同指数最高,为18.69%;构树与不同废弃物的混合厌氧发酵过程符合修正Gompertz方程(R~20.97),可用该拟合方程模拟混合厌氧发酵过程。 相似文献
5.
6.
温度条件对猪粪厌氧发酵沼气产气特性的影响 总被引:32,自引:0,他引:32
以猪粪为发酵原料、以中温厌氧发酵瓶的底物为接种物,在自制的小型厌氧发酵装置上,研究了温度条件对猪粪厌氧发酵产气特性的影响。结果表明,在发酵初、中期,中温(37℃)试验组显现了明显的优势,日产气量和累积产气量都高于高温(52℃)和室温试验组。高温和室温试验组的微生物活性因受到环境温度改变的影响,甲烷化反应受到明显抑制。当发酵进行到后期时,高温试验组日产气量高于室温和中温试验组。中温、高温和室温3个试验组在发酵15d时,沼气中甲烷含量分别为59.8%,70%,62.3%。 相似文献
8.
9.
为了探究带有屈服应力性质的厌氧发酵液中的气泡生成特性,采用VOF法对带有屈服应力性质的厌氧发酵液中的气泡生成过程进行了数值研究。研究发现:带有屈服应力性质的厌氧发酵液中的气泡生成过程可分为膨胀阶段和脱离阶段。在气泡膨胀阶段,气泡中心的起始纵向速度较大,然后速度下降,并维持在一个较小的速度下膨胀;此时,气泡周围的流体主要沿气泡的外法线方向流动,使气泡加速膨胀,直至膨胀成球状。在气泡脱离阶段,气泡的侧端产生了对称的左右漩涡,促使其顶部继续向外扩张,纵向速度有较明显的增加;同时,气泡的"长颈"开始加速生成,最后与喷嘴脱离。在气泡的生成过程中,屈服区域逐渐变大。对于不同的屈服应力的流体而言,气泡的纵横比随着屈服应力的增大而减小,其生成时间随着屈服应力的增加而增加。文章的研究结果将有助于禽畜粪便厌氧发酵过程的优化设计。 相似文献
10.
在厌氧、37℃和120 r/min条件下,将味精废水接种活性污泥后进行批培养,向发酵液中添加乳酸盐(终浓度为0.05 g/L),不仅补偿了F420分子合成前体的非均衡性供给,而且提高了厌氧电子传递效率,促进了甲烷菌群细胞的镍同化作用(同化镍含量比对照组提高了68.8%),从而最终提高了味精废水发酵产气效率.试验组(添加乳酸盐)挥发性乙酸盐残留量比对照组减少了62%,沼气总产量、总固形物TS、消耗单位质量挥发性脂肪酸的沼气得率系数YP/N、单位质量总固形物的沼气得率系数YP/N、挥发性脂肪酸的比消耗速率qv、沼气的比生成速率qp分别比对照组提高了48.8%,12.5%,21.9%,31.4%,13.8%和31.2%,说明向味精废水中添加乳酸盐,可以促进挥发性乙酸钠底物代谢流向终产物甲烷而非仅用于菌群繁殖,乳酸盐是通过提高菌群的甲烷合成能力,而非仅通过促进菌群生长的群体优势来提高沼气产量. 相似文献
11.
通过对一套建设在实地的有效容积30m^3的污泥厌氧消化装置进行的中试研究,分析了在当地环境下当地污泥消化比较适宜的温度、pH值、投配率以及产气量的规律,同时也积累了污泥接种和污泥厌氧消化启动过程中的数据,与实验室试验相比这些结果更接近大规模运行的工程项目实际情况,可以为后续开展大规模污泥厌氧消化处理提供与实际情况更为接近的数据支持,为此类项目的投资决策提供依据。 相似文献
12.
以华南地区生长的多年生草本植物象草、芒草和五节芒为原料,采用序批式中温(35 ± 1℃)厌氧发酵工艺,研究这三种能源草制备生物燃气的性能。结果表明:象草、芒草和五节芒的最高日产气率分别为31.33、24.84和19.51 Nml•(gVSadded)−1•d−1,原料产气率分别为355.78、285.58和235.38 Nml•(gVSadded)−1,产甲烷率分别为166.43、109.89和97.20 Nml•(gVSadded)−1,占理论产甲烷率的33.83%、21.67%和19.48%,象草的厌氧发酵性能优于芒草和五节芒的主要原因是象草中纤维素、半纤维素等易降解的有机物含量较高。修正的Gompertz方程拟合效果较好,象草、芒草和五节芒的累积产气量分别为344.81、290.11和279.01 Nml•(gVSadded)−1,延滞期分别为5.96、0.71和0 d。 相似文献
13.
14.
Erik R. Coats Erin Searcy Kevin Feris Dev Shrestha Armando G. McDonald Aurelio Briones Timothy Magnuson Maxine Prior 《Biofuels, Bioproducts and Biorefining》2013,7(4):459-473
Over 9 million dairy cows generate an estimated 226 billion kg of wet manure annually in the USA. To help mitigate dairy greenhouse gas (GHG) emissions associated with the degradation of this organic‐rich waste, manure can be processed via anaerobic digestion (AD) to methane and ultimately electricity. This potential value of AD has generated high‐level dairy‐industry support for broad‐scale technology deployment; however, on‐the‐ground AD realization has been impeded by process stability/reliability concerns and poor economics. Considering these challenges but recognizing that AD represents a fundamentally sound manure‐management approach, an interdisciplinary research team has completed proof‐of‐concept investigations on an integrated process that will concurrently improve manure management economics and reduce dairy GHG emissions. The integrated processes center on a two‐stage fermentation/AD system that can generate methane quantity/quality comparable to conventional single‐stage AD. Molecular level investigations confirm that the AD is highly enriched with a unique and synergistic microbial population which yielded a more resilient and stable process. Beyond AD, algae grown on nitrogen/phosphorus‐rich AD supernatant in a photobioreactor yielded biomass concentrations approaching 1.0 g L–1; despite an apparent growth lag/inhibition associated with excess organic acids and ammonia, algae growth was significant. Environmental life cycle assessment (LCA) demonstrated that the two‐stage AD configuration coupled with algae production can reduce GHG emissions by approximately 60% as compared with a traditional anaerobic lagoon. The end result is a manure‐management platform that can increase US dairy viability and sustainability. Ongoing investigations are aimed at process refinement with an ultimate commercialization goal. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd 相似文献
15.
16.
以汽爆狼尾草的高底物浓度乙醇发酵全残留物为底物,进行甲烷潜力测试(BMP)以及单相全混式连续搅拌反应器(CSTR)厌氧消化实验,以验证乙醇发酵全残留物的产甲烷特性及残留物中各组分在生产清洁能源甲烷时的底物贡献率。经过50 d的BMP实验,甲烷产量最终达到884 mL,相应的甲烷产率为390.6 mL/g VS,其中纤维素和半纤维素在第10天达到产气高峰,累计产气量占全残留物累计产气量的48.2%,小分子酸和酶与酵母在第2天达到产气高峰,其产气量分别占全残留物累计产气量的22.4%和26.4%。随后使用CSTR反应器进行单相厌氧消化,有机负荷从1.5 g VS/(L·d)逐渐提升至3.5 g VS/(L·d),最终获得457.1 L/kg VS的甲烷产率和47.3%的挥发性固体(VS)去除率。结果表明:狼尾草作为一种木质纤维素原料,在获得满足工业蒸馏需求的乙醇浓度后,其发酵全残留物仍可作为良好的底物通过厌氧消化制取甲烷,不仅减少工艺的环境排放负荷,而且可提高原料的利用率。 相似文献
17.
试验研究了梨渣和猪粪在分批厌氧发酵和连续厌氧发酵工艺中的产气性能.分批厌氧发酵考察不同接种量、渣粪比以及发酵温度对梨渣产气量和甲烷含量的影响,结果表明,接种量为30%和40%时发酵可以正常启动;梨渣中加入猪粪后产气性能提高,渣粪比为1:∶1时,甲烷含量在60%以上;高温条件下的总产气量比中温条件下高32%,但所产沼气中甲烷含量偏低.连续厌氧发酵试验表明,梨渣的添加比例从15%提高到50%时,干物质产气率从207 L/kg降低到109 L/kg,甲烷含量从81.2%降低到57.0%. 相似文献
18.
《International Journal of Hydrogen Energy》2020,45(8):5239-5251
This study evaluated the feasibility of H2 and CH4 production in two-stage thermophilic (55 °C) anaerobic digestion of sugarcane stillage (5,000 to 10,000 mg COD.L−1) using an acidogenic anaerobic fluidized bed reactor (AFBR-A) with a hydraulic retention time (HRT) of 4 h and a methanogenic AFBR (AFBR-S) with HRTs of 24 h–10 h. To compare two-stage digestion with single-stage digestion, a third methanogenic reactor (AFBR-M) with a HRT of 24 h was fed with increasing stillage concentrations (5,000 to 10,000 mg COD.L−1). The AFBR-M produced a methane content of 68.4 ± 7.2%, a maximum yield of 0.30 ± 0.04 L CH4.g COD−1, a production rate of 3.78 ± 0.40 L CH4.day−1.L−1 and a COD removal of 73.2 ± 5.0% at an organic loading rate (OLR) of 7.5 kg COD.m−3.day−1. In contrast, the two-stage AFBR-A system produced a hydrogen content of 23.9 ± 5.6%, a production rate of 1.30 ± 0.16 L H2.day−1.L−1 and a yield of 0.34 ± 0.08 mmol H2.g CODap−1. Additionally, the decrease in the HRT from 18 h to 10 h in the AFBR-S favored a higher methane production, improving the maximum methane content (74.5 ± 6.0%), production rate (5.57 ± 0.38 L CH4.day−1.L−1) and yield (0.26 ± 0.06 L CH4.g COD−1) at an OLR of 21.6 kg COD.m−3.day−1 (HRT of 10 h) with a total COD removal of 70.1 ± 7.1%. Under the applied COD of 10,000 mg L−1, the two-stage system showed a 52.8% higher energy yield than the single-stage anaerobic digestion system. These results show that, relative to a single-stage system, two-stage anaerobic digestion systems produce more hydrogen and methane while achieving similar treatment efficiencies. 相似文献
19.
Enrica Uggetti Bruno Sialve Eric Trably Jean‐Philippe Steyer 《Biofuels, Bioproducts and Biorefining》2014,8(4):516-529
In the energy and chemical sectors, alternative production chains should be considered in order to simultaneously reduce the dependence on oil and mitigate climate change. Biomass is probably the only viable alternative to fossil resources for production of liquid transportation fuels and chemicals since, besides fossils, it is one of the only available sources of carbon‐rich material on Earth. Over recent years, interest in microalgae biomass has grown in both fundamental and applied research fields. The biorefinery concept includes different technologies able to convert biomass into added‐value chemicals, products (food and feed) and biofuels (biodiesel, bioethanol, biohydrogen). As in oil refinery, a biorefinery aims at producing multiple products, maximizing the value derived from differences in biomass components, including microalgae. This paper provides an overview of the various microalgae‐derived products, focusing on anaerobic digestion for conversion of microalgal biomass into methane. Special attention is paid to the range of possible inputs for anaerobic digestion (microalgal biomass and microalgal residue after lipid extraction) and the outputs resulting from the process (e.g. biogas and digestate). The strong interest in microalgae anaerobic digestion lies in its ability to mineralize microalgae containing organic nitrogen and phosphorus, resulting in a flux of ammonium and phosphate that can then be used as substrate for growing microalgae or that can be further processed to produce fertilizers. At present, anaerobic digestion outputs can provide nutrients, CO2 and water to cultivate microalgae, which in turn, are used as substrate for methane and fertilizer generation. © 2014 Society of Chemical Industry and John Wiley & Sons, Ltd 相似文献
20.
Izabela Koniuszewska Ewa Korzeniewska Monika Harnisz Małgorzata Czatzkowska 《国际能源研究杂志》2020,44(8):6240-6258
Anaerobic digestion (AD) is an organic matter conversion technology which offers a wide range of options for production of biogas from organic biomass, providing an excellent opportunity to convert abundant bioresources into safe, eco-friendly, renewable energy. Important factors in the process of AD are the biodiversity of microorganisms, chemical load of oxygen demand, and content of water and total solids. A challenge for the future is to find technologies that will maximally enhance biogas production and to find pathways for biogas to supersede well-established technologies and practices in the contemporary heavily fossil fuel-based energy system. Current studies on technologies of biogas production indicate a number of possibilities of using appropriate biological and physicochemical additives, like added enzymes or fruit pomace, as well as immobilizing microorganisms on biofilters. Anaerobic biorefinery is an emerging concept that generates not only bioenergy but also high-value biochemical products from the same feedstock. This study is a review of articles describing the intensification of biogas production by using various technologies. 相似文献