首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
油田压裂废水的絮凝-Fenton氧化-SBR联合处理实验研究   总被引:1,自引:0,他引:1  
针对中原油田压裂作业废水矿化度高、悬浮性固体(SS)含量高和有机物含量高且性质稳定的特点.采用絮凝-Fenton氧化-SBR联合处理方法对压裂废水进行了处理条件研究。结果表明:压裂废水COD值为2000mg/L-3000mg/L时。聚合硫酸铁(PFS)加量为50mg/L、聚丙烯酰胺(PAM)加量为4mg/L、搅拌速度100r/min下进行絮凝沉降30min,再于H2O2投加量为1000mg/L、FeSO4投加量为150mg/L反应温度为40℃条件下氧化处理45min后,进入SBR反应器曝气8h和沉降1h后。处理后压裂废水的COD去除率可达95.43%.出水COD值降至125.84mg/L.达到国家二级排放标准(GB8978—1996)。  相似文献   

2.
通过室内配制含不同浓度压裂返排液的洗井废水,研究了不同返排液含量的洗井废水的絮凝剂加量和沉降时间。实验结果表明,水样单独加CPAM时,含10%、20%、30%(体积分数)返排液的洗井废水的CPAM最优加入浓度分别为5、6、8 mg/L;含10%返排液的洗井废水在CPAM加入浓度为5 mg/L、PAC加入浓度为250 mg/L、沉降4 h的条件下,含油浓度和悬浮固体浓度可分别降至7.5和16.5 mg/L;含20%返排液的洗井废水在CPAM加入浓度为6 mg/L、PAC加入浓度为300 mg/L、沉降4 h的条件下,含油浓度和悬浮固体浓度可分别降至6.9和18.9 mg/L;含30%返排液的洗井废水在CPAM加入浓度为8 mg/L、PAC加入浓度为350 mg/L、沉降4 h的条件下,含油浓度和悬浮固体浓度可分别降至7.1和16 mg/L,满足现场处理指标。  相似文献   

3.
河南油田采油酸化废水无害化处理技术研究   总被引:3,自引:0,他引:3  
报道了采用碱处理-氧化/吸附-混凝法处理油田酸化废水的一种工艺方法.实验用酸化废水取自河南油田,由剩余酸及酸化返排液组成,其CODcr=4367 mg/L,由70.4%无机物和29.6%有机物构成.实验研究中以CODcr去除率为考察指标,所得药剂适宜加量和工艺参数如下:在碱处理阶段,Ca(OH)2加量100 g/L,使废水pH由1.0升至11.5,CODcr去除率45.8%;在氧化阶段,H2O2溶液加量3 mL/L,镀铜铁屑加量4 g/L,pH值3~4;在吸附阶段,活性炭加量10 g/L,pH值4~5,搅拌时间60 min.进一步通过正交设计实验,求得氧化/吸附阶段最佳工艺条件为:pH=45,H2O2溶液加量3 mL/L,镀铜铁屑加量4 g/L,活性炭加量10 g/L,搅拌时间80 min.碱处理后废水经此氧化/吸附处理后,CODcr为315 mg/L,再加入2.5 g/L PAC混凝处理后,pH=7.5,CODcr为115 mg/L,去除率达97.4%;悬浮固体由原废水的624 mg/L降至4 mg/L,含油由1.41 mg/L降至0.4 mg/L,色度由110 mg/L降至6 mg/L,Cl-由47341 mg/L降至198 mg/L.处理后废水达到国家二级排放标准.表7参5.  相似文献   

4.
Fenton氧化深度处理稠油废水   总被引:1,自引:0,他引:1  
郭训文  汪晓军 《油田化学》2013,30(2):276-279
针对稠油废水成分复杂、可生化性差、毒性大,使用常规处理方法难以使出水COD达标排放的问题,采用Fenton氧化对其进行深度处理。探讨了H2O2和Fe2+投加量、废水初始pH值、反应时间、药剂投加方式对稠油废水COD去除效果的影响。结果表明:在摩尔比n(H2O2):n(Fe2-)=1:1、质量比m(H2O2):m(COD)=1:1、反应时间2 h、废水初始pH=3、反应温度18~20℃、一次性投加药剂的条件下,废水COD去除率为74.2%,出水COD值为58.9mg/L,完全满足油田废水达标排放的要求。在药剂投加总量相同的情况下,相比一次性投加,分两次或三次投加药剂可降低COD值。  相似文献   

5.
油田压裂废水的Fenton氧化-絮凝-SBR联合处理方法研究   总被引:2,自引:0,他引:2  
针对油田压裂废液COD高、难降解的特点,采用Fenton氧化-絮凝-SBR联合处理方法对压裂废水进行处理条件研究。结果表明:按30%双氧水(体积百分比)加量为0.2%、FeSO4加量为20mg/L条件下进行Fenton氧化30min,再按PAC加量为70mg/L、PAM加量为3mg/L、搅拌速度100r/min条件下进行絮凝处理30min后,进入SBR反应器曝气8h和沉降1h后,处理后压裂废水的COD从4132.92mg/L降至190.38mg/L,其去除率可达95.4%,接近国家二级排放标准。  相似文献   

6.
采用臭氧/活性炭催化氧化法净化含腈废水   总被引:1,自引:0,他引:1  
在含腈废水量为7.5 L,气体流量为0.2 m3/h,臭氧加入量为2.3 g/h,静态氧化反应时间为20 min的条件下,采用两段臭氧/活性炭催化氧化法,可净化丙烯腈含量为251 mg/L的工业废水.通过静态、动态实验表明,净化后废水中丙烯腈含量由原来的251 mg/L降低到50 mg/L以下;在臭氧总量不变的情况下,当两段臭氧量分配质量比为70/30时,臭气利用率可达98%.  相似文献   

7.
针对某橡胶污水场外排水化学需氧量(COD)偏高,不能满足现行排放标准的问题,以二沉池出水为研究对象,采用芬顿氧化法进行深度处理,考察了影响污水COD去除率的因素,并完成了中试连续试验。结果表明:采用芬顿氧化法处理污水场二沉池出水,当污水pH值为3.20、H2O2与Fe2+质量浓度比为3∶1、H2O2投加量为198 mg/L、反应时间为3 h时,出水COD由102~121 mg/L降至51~58 mg/L,平均去除率为51.4%,工艺运行稳定,满足国标直排要求。  相似文献   

8.
驯化污泥及生物滤池法处理高含盐石化废水   总被引:1,自引:0,他引:1  
 考察了纯氧曝气活性污泥和生物滤池深度处理石化高盐废水的工艺条件及处理效率。结果表明,在总溶固(TDS)为18000~35000 mg/L 的范围,通过驯化培养出的耐盐活性污泥能够适应短时间的盐浓度冲击,在纯氧曝气活性污泥工艺中,使废水的化学需氧量(COD)的平均降低率达到85%。进一步采用厌氧生物滤池(AF)和曝气生物滤池(BAF)工艺对生化出水进行深度处理,在共基质质量浓度12 mg/L,BAF 水力停留时间2.7 h、 水力负荷1.1 m3/(m2·h)条件下,当待处理废水的 COD 在58.1~114.1 mg/L、 NH3-N 质量浓度在1.2~19.0 mg/L 范围时, 废水的 COD 平均降低率可达43.7%, NH3-N 平均降低率达74.2%, 出水的 COD 和 NH3-N 的质量浓度平均值分别为42.9和2.2 mg/L。  相似文献   

9.
以硅酸钠、四硼酸钠、硫酸锌和硫酸镁为原料,采用复合共聚法,在硅酸钠摩尔浓度为0.25 mol/L,四硼酸钠/硅酸钠(摩尔比)为0.7,硫酸镁/硅酸钠(摩尔比)为1.5,硫酸锌/硅酸钠(摩尔比)为1.0,聚合温度为25℃,聚合时间为60 min的条件下,可制备絮凝效果最佳的含硼聚硅酸硫酸镁锌复合絮凝剂(PMZSSB)。结果表明:用PMZSSB处理p H值为7.0~12.0的含油废水,在其质量浓度为128.2 mg/L的条件下,废水浊度由77.41 NTU降至4.49 NTU,浊度去除率达到94.2%;在相同条件下,PMZSSB的絮凝效果优于Al2(SO4)3,Al Cl3及聚合氯化铝、聚合氯化铝铁等絮凝剂。  相似文献   

10.
采用超高石灰铝法,考察了氧化钙和偏铝酸钠的配比、搅拌速率、反应温度、搅拌时间对废水中氯离子的去除影响。结果表明,在温度为25℃,n(Ca)∶n(Al)∶n(Cl)为20∶5∶2,搅拌速率为400 r/min,反应时间为2 h的条件下,废水中氯离子质量浓度由2 500 mg/L降低到282 mg/L,去除率可达89%。  相似文献   

11.
碱性污水生物催化氧化预处理工业试验   总被引:2,自引:1,他引:1  
采用生物催化氧化预处理新工艺对炼油厂的碱性污水进行工业试验.结果表明:二级生物催化氧化反应工艺比单级氧化反应工艺效果好.当炼油厂碱性污水CODcr为500~4 500mg/L,硫化物为94~800mg/L,挥发酚为70~800mg/L时,采用二级生物催化氧化工艺,在水力停留时间HRT=3~6 h,曝气量为16 m3/h条件下,碱性污水的硫化物去除率平均可达95%以上,出水中硫化物浓度仅为3 mg/L左右,CODcr、酚和油的去除率均达60%以上,达到了预处理目的.工业试验为工艺设计和工业运行提供了有关操作参数.  相似文献   

12.
考察了钙离子浓度对活性污泥系统脱氮效果的影响。在单级序批式反应器(SBR)中,对于化学需氧量(COD)为680 mg/L、氨氮(NH+4-N)质量浓度为20 mg/L的自配废水,逐步增加钙离子浓度,测定了在不同钙离子浓度下的总氮(TN)去除率、NH+4-N去除率、亚硝酸氮(NO-2-N)和硝酸氮(NO-3-N)累积量及污泥体积指数(SVI),并采用最大或然数(MPN)法测得亚硝酸菌、硝酸菌和反硝化菌数量的变化规律。结果表明,在钙离子质量浓度为480~1000 mg/L时,SVI为25 mL/g,污泥颗粒密实度较大,系统中硝酸菌与反硝化菌的数量均维持在104~105数量级,TN和NH+4-N去除率均在90%以上,NO-3-N累积量小于0.25 mg/L,实现了同步硝化反硝化(SND)作用,这是实现较高脱氮效果的主要原因。  相似文献   

13.
为解决现有生化及物化工艺处理含聚污水效果较差的问题,开展了双微组合工艺处理试验。该工艺包括微气泡旋流气浮和微滤两套装置。微气泡旋流气浮集旋流和气浮选技术于一体,增大了气泡与杂质的碰撞概率,从而提高处理效率;微滤采用密度较石英砂滤料小的活性镀膜滤料,表面布满微孔使得其比表面积增大,吸附能力增强,从而可以高效吸附污水中的杂质。在含聚污水处理站开展的现场试验表明:对于含聚浓度低于300 mg/L、含油浓度低于630 mg/L、悬浮物浓度低于120 mg/L的聚驱采出污水,经过双微技术处理后,含油及悬浮物浓度均达到5 mg/L以下,去除效率都较高,优于现有生化工艺;微气泡旋流气浮最佳工况为气液比1∶10,回流比15%;微滤技术最佳滤速为8 m/h,反冲洗周期24 h,最佳的气洗强度为10 L/(s·m2)。  相似文献   

14.
应用生物流化床水处理技术对对苯二甲酸(PTA)污水进行了处理量为300~400L/h的侧线试验研究,结果表明:在进水COD为1000~3600 mg/L、水力停留时间为7~8h的情况下,COD平均去除率达91%,BOD容积负荷平均可达3.82kg/(m3?d)。该工艺抗冲击能力强,处理后的污水COD小于500 mg/L,达到企业预处理要求。  相似文献   

15.
新型固定生物床处理炼油厂含酚污水工业试验   总被引:4,自引:1,他引:3  
为减少炼油厂含酚污水的污染,从生活污泥中培育出噬酚菌,以生物陶粒作为填料,用新型固定生物床对含酚污水进行工业试验.结果表明:在含酚污水COD小于500mg/L,酚浓度小于130 mg/L的条件下,含酚污水仅需经过2~3 h的处理,就可使酚的降解率大于85%,COD的降解率大于60%,出水酚浓度小于20 mg/L,COD小于200mg/L.  相似文献   

16.
在常温常压下对臭氧氧化降解水中苯酚的效能、反应动力学及其影响因素进行了详细研究。结果表明,在臭氧投加量为8.50 mg/min,苯酚初始质量浓度为100 mg/L,初始pH值为11和反应时间为40 min时,臭氧对苯酚的降解效果最好,苯酚从100 mg/L降至0.35 mg/L,降解率达到99.65%;且自来水本底比去离子水本底更有利于水中苯酚的臭氧氧化降解。在上述实验条件下,臭氧对苯酚的降解遵循表观拟一级反应动力学,其相关系数R2=0.9929,表观反应速率常数kA=1.06×10-3 s-1。实验还发现,苯酚降解的表观反应速率常数随着臭氧投加量(4.25~8.50 mg/min)的增加而增大,在臭氧投加量为8.50 mg/min达到最大值1.06×10-3 s-1;随着苯酚初始质量浓度(100~250 mg/L)的增大,表观反应速率常数从1.06×10-3 s-1下降到0.39×10-3 s-1;随着溶液初始pH值(5~11)的升高,表观反应速率常数从0.22×10-3 s-1增加到1.06×10-3 s-1。在某种程度上证明了表观反应速率常数分别与臭氧投加量和溶液初始pH值成正相关性,与苯酚初始质量浓度成负相关性。  相似文献   

17.
炼油污水厂中的中水回用浓水和反渗透浓水的无机盐类含量高、硬度高、可生化性差.将中水回用浓水和反渗透浓水与污水处理场出水混合处理,采用调节罐+高密度沉淀池+臭氧催化氧化池+改良多级曝气生物滤池+微砂加炭高效沉淀池的工艺流程,处理后出水能够达到DB 61/224—2018《陕西省黄河流域污水综合排放标准》中的指标A标准.运...  相似文献   

18.
超滤法处理油田含油污水的试验研究   总被引:7,自引:1,他引:6  
油田含油污水深度处理后回收利用是稠油注汽开采工艺中解决锅炉水源短缺的最佳途径。采用超滤装置对油田含油污水进行处理试验,结果表明,HPL型板框式超滤器在压力低于0.40 MPa,运行温度40~45℃条件下,配用PSF超滤膜,可将含油污水一次连续浓缩,其含油量由55~6000 mg/L增至1%~3%,体积浓缩大于20倍,超滤平均通量15~20L/(m~2·h);渗透液中含油量降至100mg/L以下,油分截留率大于99%,对COD截留率大于90%。  相似文献   

19.
用吸附胶体浮选法处理Ni^2+质量浓度为40mg/L的模拟含镍废水,研究了工艺条件对除镍率的影响。结果表明,处理50mL模拟含镍废水的最佳工艺条件是:AlCl3溶液(质量浓度为10g/L)用量为9mL,废水体系pH值为8,十二烷基苯磺酸钠(SDBS)溶液(质量浓度为2g/L)用量为1.5mL,浮选时间为1min,空气流量为120mL/min。向1L Ni^2+质量浓度为46.5mg/L的电镀废水中加入2.1g AlCl3,将废水体系pH值调为8,加入0.16g SDBS,浮选后除镍率高达98.9%,对Cr^3+,Zn^2+,Cd^2+的去除率分别为99.5%,99.4%,99.6%。  相似文献   

20.
采用磷酸铵镁沉淀法和序列间歇式活性污泥法(SBR)协同处理高含磷检修废水,研究了磷酸铵镁反应中pH值、磷氮摩尔比、镁磷摩尔比等反应因素对高磷检修废水除磷效果的影响。结果表明,当反应中pH=9.5,n(Mg)∶n(P)∶n(N)=1.5∶1∶1时,高含磷检修废水总磷去除效果最佳,去除率可达到98%以上。采用该工艺对污水处理场高磷检修废水进行现场除磷预处理,总磷浓度由256 mg/L降至2.51 mg/L,总磷去除率达99%,效果显著。进一步SBR生化处理后,出水的pH值、COD、NH3-N、TP和SS等各项指标均符合GB 8978—1996《废水综合排放标准》一级标准,达到了预期的处理目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号