首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

2.
The friction and wear performance of WC-12Co air plasma–sprayed (APS) coating at temperatures of 25–650°C under loads of 8 and 28 N in at atmospheric environment have been studied by a ball-on-disc tribometer. The effect of temperature and load on the tribological behavior of WC-Co coating was investigated. The results show that under a load of 8 N, the wear volume of the coating increases at 250°C due to the coating splat delamination and then it gradually decreases at 350–500°C. The friction could promote the formation of double oxide (CoWO4), which is beneficial to reduce friction and wear. At higher temperatures, the wear volume increases again due to the removal of oxides. Under a load of 28 N, the wear volume of the coating increases enormously at 250°C due to the serious splat delamination. At 350°C, the load promotes double oxide formation, resulting in an early decrease in the coefficient of friction and a rapid reduction in wear volume. Although the wear volume decreases at 350–500°C, it is 10-fold higher than that under a load of 8 N. Above 500°C, the differences of the wear volumes of coatings under the two loads become less obvious, and similar trends also appear for the coefficients of friction. The synergistic effect between the load and temperature on the friction and wear mechanism of WC-12Co APS coating is discussed.  相似文献   

3.
《Wear》2007,262(3-4):235-241
During hot drawing, work tools are subjected to severe constraints. Thus, tool wear is a main preoccupation for industrial engineers. For this reason, it is important to better understand the phenomena which occur at the interface between tool and sheet in this kind of process. That is why, a pin on disc tribometer for high temperature has been designed and achieved. Its originality consists in having an open contact on a continuously new disc surface. This machine permits the simulation of the contact at the tool/product interface during the hot drawing process.In this paper, this new tribometer is described. Then, a friction and wear comparative study of various tool materials is carried out at a temperature of 400 °C and with a pressure of 20 MPa. The classification of these materials is done according to the measurement of the friction coefficient and the wear characterization. Pins, which represent tools are: X153CrMoV12 steel samples uncoated and coated with TiAlN deposited by PVD process and nodular cast iron GJS 600 ones.Sheets made of steel and representing drawing products are: uncoated and coated samples by bimetallic alloy coating. The tribometer is able to classify and to evaluate the tribological performances of the different combinations of pins and sheets. Tests show that coatings reduce friction. However, they do not prevent adhesive wear of pins.  相似文献   

4.
Cu films were deposited on Si substrates by direct current (DC) magnetron sputtering at three different substrate temperatures such as room temperature (RT), 100 °C and 200 °C. Possible mechanisms for substrate temperature dependent microstructure evolution in Cu films are discussed in this paper. Enhanced mechanical properties such as high hardness, high elastic modulus, low friction coefficient and high wear resistance of the films were obtained at deposition temperature of 100 °C. However, high friction coefficient as well as high wear rate was measured in films deposited at room temperature and 200 °C.  相似文献   

5.
The tribological properties of Ni-17.5Si-29.3Cr alloy against Si3N4 were studied on a ball-on-disc tribotester between room temperature and 1000 °C. The effects of temperature on the tribological properties of the alloy were investigated. The worn surfaces of the alloy were examined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicated that the tribological behavior of the alloy expressed some differences with increase in testing temperature. At low and moderate temperatures (below 800 °C), the alloy showed excellent wear and oxidation resistances, and the wear rate of the alloy remained in the magnitude of 10?5 mm3/Nm; but at elevated temperature (800–1000 °C), the wear and oxidation resistances decreased, and the wear rate of the alloy increased up to 10?4 mm3/Nm. The friction coefficient decreased from 0.58 to 0.46 with the rising of testing temperature from 20 to 600 °C, and then remained nearly constant. The wear mechanism of the alloy was mainly fracture and delamination at low and moderate temperatures, and transformed to adhesive and oxidation at elevated temperatures.  相似文献   

6.
Dry sliding wear tests were performed for 3Cr13 steel with various tempered states at 25–400°C; wear and friction characteristics as well as the wear mechanism were explored. With an increase in test temperature, the wear rate decreased accompanied by an increase in tribo-oxides. The fluctuation of friction coefficient was slight at 25–200°C but became violent at 400°C. At 25–200°C, adhesive wear prevailed due to trace or less tribo-oxides; at 400°C, oxidative wear prevailed with the predominant tribo-oxides of Fe3O4 and Fe2O3. It can be suggested that the antioxidation of the stainless steel postponed the occurrence of oxidative wear to a higher test temperature. For adhesive wear, the wear resistance, roughly following Archard's rule, was directly proportional to hardness besides the specimen tempered at 500°C with grain boundary brittleness. But for elevated-temperature wear, a better wear resistance required thermal stability and an appropriate combination of hardness and toughness.  相似文献   

7.
Abstract

Mechanical components in tribological systems exposed to elevated temperatures are gaining increased attention since more and more systems are designed to operate under extreme conditions. In hot metal forming, the effect of temperature on friction and wear is especially important since it is directly related to process economy (tool wear) and quality of the produced parts (friction between tool and workpiece). This study is therefore focused on fundamental understanding pertaining to the tribological characteristics of prehardened hot work tool steel during sliding against 22MnB5 boron steel. The tribological tests were carried out using a high temperature reciprocating sliding friction and wear tester under a normal load of 31 N (corresponding to a contact pressure of 10 MPa), a sliding speed of 0·2 m s?1 and temperatures ranging from 40°C to 800°C. It was found that friction coefficient and specific wear rate decreased at elevated temperature because of formation of compacted wear debris layers on the surfaces.  相似文献   

8.
We examined cutting point temperature and tool wear in driven rotary cutting. Cutting tests under dry and minimum-quantity-lubrication (MQL) conditions of stainless steel (SUS304) were carried out. Cutting point temperature was measured using a tool-work-thermocouple method at various cutting speeds. Cutting point temperature tends to increase with increased cutting speed. In driven rotary cutting, cutting point temperature was lower than that of non-rotation cutting. At high-speed cutting of 500 m/min, cutting point temperature was over 1200 °C in the non-rotation tool, but 1000 °C with driven rotary cutting. In addition, when driven rotary cutting was used with MQL, cutting point temperature was decreased to 900 °C. The magnitude of tool wear corresponded almost precisely to cutting point temperature. Severe adhesion on the rake face was observed and resulted in progressive wear on the rake face in rotary cutting at a cutting speed of 100 m/min. The appropriate cutting speed range passively shifts higher from the viewpoint of cutting temperature with rotary cutting.  相似文献   

9.
《Wear》2007,262(5-6):742-748
Tribological characteristics of ultra-high molecular weight polyethylene (UHMW-PE) disks molded at 130–190 °C were studied. The highest crystallinity was obtained for the sheet molded at 130 °C, but crystallinity decreased with increasing molding temperature. Beyond 150 °C, the resultant crystallinity reached a constant level. The dynamic friction coefficients of these UHMW-PE disks were measured using a ball-on-disk friction tester. The friction coefficient decreased with increasing number of rotations in the early stage of the measurement, and achieved at an equilibrium level, independent of the molding temperature. The steady-state friction coefficient was 0.04 for the disk molded at 130 °C and increased with increasing molding temperature. The disks molded at 150–190 °C always had a steady-state friction coefficient of 0.065. The surface deformation of each disk was evaluated from the observation of the resultant wear track. Analyzing the relationship between the above friction coefficient and width of the wear track enabled us to interpret the tribological mechanism generated in this study.  相似文献   

10.
The effects of temperature and sliding distance on the metal-to-metal wear behavior of austenitic Fe-20Cr-1.7C-1Si hardfacing alloy were investigated in air in the temperature range from 25 to 450 °C. The applied contact stress was 55 MPa and the maximum sliding distance was 18 m. In the temperature range from 25 to 200 °C, the weight loss increased linearly with increasing sliding distance. The weight loss increased parabolically with increasing sliding distance up to 18 m at 300 °C, but at 450 °C, the weight loss drastically increased from the beginning of the wear test and became almost saturated above a sliding distance of 3.6 m. The initial friction coefficient was not changed with temperature up to 300 °C. However, at 450 °C, the initial friction coefficient increased abruptly. It was thought to be due to the increasing tendency of adhesive bonding to occur between the two self-mating specimens. At temperatures below 200 °C, the steady state friction coefficient did not change significantly. Above 300 °C, the steady state friction coefficient decreased due to the oxide layers that formed on the worn surfaces during wear.  相似文献   

11.
Studies have been carried out to explore the friction and wear behaviors of NiAl matrix self-lubricating composites containing graphene nanoplatelets (NG) against an Si3N4 ball from 100 to 600°C with a normal load of 10 N and a constant speed of 0.2 m/s. The results show that NG exhibits excellent tribological performance from 100 to 400°C compared to NiAl-based alloys. A possible explanation for this is that graphene nanoplatelets (GNPs) contribute to the formation of a friction layer, which could be beneficial to the low friction coefficient and lower wear rate of NG. As the temperature increases up to 500°C, the beneficial effect of GNPs on the tribological performance of NG becomes invalid due to the oxidation of GNPs, resulting in severe adhesive wear and degradation of the friction layer on the worn surface of NG. GNPs could hold great potential applications as an effective solid lubricant to promote the formation of a friction layer and prevent severe sliding wear below 400°C.  相似文献   

12.
Nb1−x Al x N hard coatings were synthesised by cathodic arc-evaporation with different Al contents to study its influence on the tribological properties. Ball-on-disc tests at temperatures up to 700 °C were performed and the recorded coefficient of friction was generally in the range from 0.8 to 1.0. Subsequent analysis of the coating wear track and the counterpart wear scar by optical profilometry and Raman spectroscopy revealed details on the wear behaviour of the tested coatings. The best wear performance for the Nb-rich coatings was in the temperature range of 300–500 °C, whereas at the maximum testing temperature the higher oxidation resistance with increasing Al content was beneficial in terms of wear resistance.  相似文献   

13.
Jianliang Li  Dangsheng Xiong 《Wear》2009,266(1-2):360-367
Nickel-based graphite-containing composites were prepared by powder metallurgy method. Their mechanical properties at room temperature and friction and wear properties from room temperature to 600 °C were investigated by a pin-on-disk tribometer with alumina, silicon nitride and nickel-based alloy as counterfaces. The effects of graphite addition amount, temperature, load, sliding speed and counterface materials on the tribological properties were discussed. The micro-structure and worn surface morphologies were analyzed by scanning electron microscope (SEM) attached with energy dispersive spectroscopy (EDS). The results show that the composites are mainly consisted of nickel-based solid solution, free graphite and carbide formed during hot pressing. The friction and wear properties of composites are all improved by adding 6–12 wt.% graphite while the anti-bending and tensile strength as well as hardness decrease after adding graphite. The friction coefficients from room temperature to 600 °C decrease with the increase of load, sliding speed while the wear rates increase with the increasing temperature, sliding speed. The lower friction coefficients and wear rates are obtained when the composite rubs against nickel-based alloy containing molybdenum disulfide. Friction coefficients of graphite-containing composites from room temperature to 600 °C are about 0.4 while wear rates are in the magnitude of 10?5 mm3/(N m). At high temperature, the graphite is not effective in lubrication due to the oxidation and the shield of ‘glaze’ layer formed by compacting back-transferred wear particles. EDS analysis of worn surface shows that the oxides of nickel and molybdenum play the main role of lubrication instead of graphite at the temperature above 400 °C.  相似文献   

14.
Cast iron may be classed as a self-lubricating metal-base composite material. The cast iron graphites have an excellent lubricity which is similar to that of a solid lubricant and contributes to the decreases in the wear loss and the friction coefficient. Factors affecting graphite film formation are discussed. The coefficient of friction increases with substrate hardness because graphite film formation is influenced by the relative difficulty of substrate deformation. Although adhesive wear and the friction coefficient increase with decreasing air pressure, the cast iron graphites contribute to the decrease in wear rate in the region of 10?2 Torr. Water vapour pressure has a direct effect on film formation and film hardening, particularly above 16 Torr. The lubricity of cast iron graphites was confirmed at temperatures below 100°C. The friction coefficient increases with the temperature rise owing to hardening of the graphite film. The effect of cast iron graphites on rolling wear resistance is discussed.  相似文献   

15.
The tribological behaviour of different monolithic and composite ceramics was evaluated in the temperature range between room temperature and 750°C. The test method was oscillating sliding with a ball‐on‐disk arrangement in an SRV machine. Alumina balls were used as counter body. The friction behaviour was determined on‐line, and the wear behaviour was determined from calculations on the basis of wear scar dimensions and profilometric measurements. The friction depends on temperature and shows an increase for most materials for increasing temperature; the smallest friction at all temperatures is found for monolithic TiC. The wear behaviour shows different trends for the different materials. In tests against SiC a maximum of wear is found at 500°C, for TiC at 200°C and for TiB2 at 750°C. The composite ceramics suffer the smallest wear of all materials in the range from 200°C to 500°C. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Laser surface texturing (LST) was performed on the nickel-based composites by a Nd:YAG pulsed laser and the regular-arranged dimples with diameter of 150 μm were fabricated on their surfaces. The textured surfaces were smeared with molybdenum disulfide powder. The tribological properties of the textured and filled composites were investigated by carrying out sliding wear tests against an alumina ball as a counterface using a high temperature ball-on-disk tribometer. The tests were conducted at a sliding speed of 0.4 m/s and at normal loads ranging from 20–100 N and from room temperature to 600 °C. The friction coefficient of nickel-based composite textured and smeared with molybdenum disulfide was found to reduce from 0.18 to 0.1 at the temperature range from 200 to 400 °C. The texture with a dimple density of 7.1% was observed to prolong wear life of MoS2 film by more than four times in comparison to the texture with other dimple densities. The lubricious oxide particles stored in the dimples reduce friction coefficient at elevated temperatures and compensate for the extra lubricant owing to the degradation of MoS2 caused by its oxidation at high temperatures.  相似文献   

17.
The tribological behavior of self-mated Ti3SiC2 is investigated from ambient temperature to 800?°C at a sliding speed of 0.01?m/s in air. The results show that at the temperatures lower than 300?°C, friction coefficient and wear rates are as high as 0.95 and 10?3?mm3/N?m, respectively. With the temperature increasing to 600?°C, both the friction coefficient and wear rates show consecutive decrease. At 700 and 800?°C, friction coefficient and wear rates are 0.5 and 10?6 mm3/N?m, respectively. According to the wear mechanism, the tribological behavior of Ti3SiC2 can be divided into three regimes: mechanical wear-dominated regime from ambient temperature to 300?°C characterized by pullout of grains; mixed wear regime (mechanical wear and oxidation wear) from 400 to 600?°C; and tribo-oxidation-dominated wear regime above 700?°C. The tribo-oxides on the worn surfaces involve oxides of Si and Ti. And, species transformation occurs to these two oxides with the increasing temperature. In the competition oxidation of elements Ti and Si, Si is preferably oxidized because of its high active position in the crystal structure. Additionally, plastic flow is another notable characteristic for the tribological behavior of self-mated Ti3SiC2.  相似文献   

18.
As demand for more power increases, compression ratios, and operating temperatures keep rising. High speeds combined with high temperatures make turbomachinery sealing applications even more challenging. In order to confirm sufficient service life material pairs should be tested under conditions similar to engine operating conditions. This study presents high temperature friction and wear characteristics of cobalt/nickel superalloys, Haynes 25 (51Co–10Ni–20Cr–15W), Haynes 188 (39Co–22Ni–22Cr–14W), and Haynes 214 (75Ni–16Cr–3Fe–0.5Mn) sheets when rubbed against Hastelloy X (47Ni–22Cr–18Fe–9Mo) pins. Tests are conducted at 25, 200, 400, and 540 °C with a validated custom design linear reciprocating tribometer. Sliding speed and sliding distance are 1 Hz and 1.2 km, respectively. Friction coefficients are calculated with friction force data acquired from a load cell. Wear coefficients are calculated through weight loss measurements. Results indicate that Haynes 25 (H25) has the lowest friction coefficients at all test temperatures. Above 400 °C, H25 and Haynes 188 (H188) exhibit the best wear resistance. Protective cobalt oxide layers are formed on the H25 and H188 at 540 °C in addition to nickel, chrome, and tungsten oxides. Although, it has better oxidation resistance, Haynes 214 has relatively higher wear rates than other tested materials especially at low temperatures. However, its wear performance improves beyond 200 °C.  相似文献   

19.
Abstract

The proposed work deals with the investigation of magnetorheological based minimum quantity lubrication of graphene oxide (GO) based jojoba oil as bio-lubricant on machinability and tool wear mechanism of turning Monel K500 alloy. Experiments were carried out for dry, flooded, minimum quantity lubrication (MQL) and magnetorheological (MR–MQL) conditions using medium duty lathe. The process parameters include the cutting speed 95, 110, 125?m/min, feed rate 0.050, 0.075, 0.1?mm/rev and depth of cut 0.25, 0.50, 0.75?mm for the output responses such as surface roughness, cutting temperature and tool flank wear. The results indicated that GO-based bio-lubricant MR–MQL reduced coefficient of friction (COF) of 0.051 and wetting angle of 6°, as well as improved machining performance such as cutting temperature of 145?°C, the surface roughness of 0.614?µm, flank wear of 0.18?mm with enhanced lubrication regime under extreme wear conditions.  相似文献   

20.
《Wear》2002,252(3-4):227-239
In this paper, the action of the zinc dialkyl dithiophosphate (ZDDP) anti-wear additive has been examined on two different materials (Steel AISI 52100 and a Co/Cr/Mo thermal spray coating) sliding against cast iron in reciprocating mode. Tests have been conducted under lubricated wear conditions at relatively low (20, 50 °C) and elevated (up to 100 °C) bulk oil temperatures. A comparison is made between the friction, wear and chemical nature of the wear film formed under varying temperatures, on two materials, in two lubricants (one free from and one containing ZDDP) and after different test durations. The wear film has been examined by energy dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS).In this work, it has been shown in this work that the friction coefficient is dependent on the temperature, the lubricant and the nature of the contacting surfaces. In the presence of ZDDP, a wear film, comprising Zn, S and P, forms even at the lowest bulk oil temperature of 20 °C. The nature of the film is dependent on the substrate material and the steel and Co/Cr/Mo coating showed contrasting film characteristics. In this paper, the wear and friction results for each couple in oil containing and free from additives is discussed with reference to the nature of the wear film. A correlation has been made between the wear, friction and chemical analysis measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号