首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on coatings based on poly(ether ether ketone) (PEEK) applied to metal substrates and their tribological investigation. Short carbon fibres (SCF), graphite, and 300 nm titanium dioxide (TiO2) and zinc sulphide (ZnS) particles were used as filler materials for the PEEK. These filler materials and their combinations were found to have a significant influence on the tribological behaviour of the corresponding PEEK compounds. One of the compounds (PEEK6) was found, especially at higher temperatures and under higher normal loads, to be a good coating material showing superior tribological behaviour. For PEEK6, a specific wear rate and a coefficient of friction (COF) lower than those for the best commercially available PEEK compound (PEEK4) were measured. For specific test parameters, PEEK6 showed a COF of less than 0.1. The tribological results were also compared with those of a conventional sliding bearing material based on poly(vinylidene fluoride) (PVDF).  相似文献   

2.
The presence of coatings and surface topography play an important role in the tribological performance of sliding components. Depending on the coating used, it is possible to reduce friction and/or reduce wear. However, although there may be low friction and wear‐resistant coatings suitable for use in pistons, some coatings may hinder the tribological performance by changing the lubrication regime or by preventing additives from their intended function through chemical mechanisms. In this work, piston skirt segments extracted from a commercial aluminium alloy piston were coated with a diamond‐like carbon (DLC) coating, a graphite–resin coating or a nickel–polytetrafluoroethylene (Ni–PTFE) coating and were tribologically tested using a reciprocating laboratory test rig against commercial grey cast iron liner segments. The tribological tests used commercial synthetic motor oil at a temperature of 120 °C with a 20 mm stroke length at a reciprocating frequency of 2 Hz. Results showed that the graphite–resin coating, although it may serve as a good break‐in coating, wears rapidly. The Ni–PTFE coating showed friction reduction, whereas the DLC coating wore off quickly due to its small thickness. Furthermore, the higher hardness of the DLC coating relative to the cast iron liner surface led to pronounced changes on the liner counterface by polishing. In contrast with the uncoated piston skirt segments, all of the coatings prevented the formation of a visible tribochemical film on the cast iron surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Friction performance of electroless Ni‐B coatings sliding against steel is experimentally investigated in this paper. Friction performance is measured in terms of coefficient of friction (COF) for varying tribological testing parameters such as load, speed and time. Taguchi‐based optimisation of the testing parameters is attempted to find the optimal combination of testing parameters for minimum COF. An analysis of variance reveals that all the testing parameters have significant influence on the friction performance of the coating. Also, the interaction between load and speed is found to affect the friction more compared with the rest of the interactions. The coating characterisation is done with the help of scanning electron microscopy (SEM), energy dispersive X‐ray and X‐ray diffraction analysis. It is found that the Ni‐B coating is amorphous in the as‐deposited condition but gradually turns crystalline with heat treatment. The sliding tracks observed with SEM showed that abrasive failure is the predominant wear mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
粉末涂料固体润滑膜滚动/滑动复合干摩擦磨损特性研究   总被引:2,自引:1,他引:1  
在M-2000磨损试验机上考察了经过一次处理和经两次处理的40Cr钢环表面喷涂3种粉末涂料型固体润滑膜(P型、H型、E型)试样,在线载荷为104N/m、相对滑动速度为0.042 m/s、干摩擦滚动/滑动复合磨损条件下的摩擦磨损性能,通过扫描电子显微镜(SEM)对试样磨损表面以及磨屑进行了显微观察。结果表明:底材经过一次处理(化学底膜处理)的复合固体润滑膜试样,P型和E型在磨损后期的摩擦因数分别稳定在0.38和0.32,而H型在0.40左右跳动;P型和H型的涂层磨损脱落期为60 m in左右,E型为120 m in左右;质量磨损从小到大顺序为P型相似文献   

5.
To obtain a composite coating possessing both good conductivity and high wear resistance, a series of coatings with conductive graphite and epoxy resin were designed. The seepage critical value (SCV) of conductive coatings was used to identify the transformation between continuous phase and dispersed phase for graphite/epoxy composite coatings. Before SCV, the coatings were insulated with epoxy resin as continuous phase and the wear behavior was primarily characterized of adhesive wear with local adhesive spalling of epoxy resin. After SCV, the coatings appeared conductivity and the surface resistance decreased monotonically with the increase of graphite content. Both the curves of friction coefficient vs. graphite content and wear rate vs. graphite content showed the same model with two valleys at graphite content of 30% and 50%, respectively. At graphite content of 50%, an optimal solid lubricant film was obtained which leaded to the lowest friction coefficient and wear rate, due to a possible dynamic equilibrium between the transfer and spalling of debris. The tribological behaviors of these coatings were evaluated using a ring-on-block tribo-tester under dry sliding friction.  相似文献   

6.
A novel FeCrNiMoCBSi amorphous/nanocrystalline coating was fabricated using a plasma spraying process. The coating was dense with a low porosity of approximately 0.99%. The coating consisted of a 67.8 vol% amorphous phase coupled with many nanocrystalline grains that were approximately 5?nm in diameter. The mechanical properties of the as-sprayed coating were determined by nanoindentation measurement, and the tribological behaviors were systematically investigated in a reciprocating sliding contact. The results show that FeCrNiMoCBSi coatings possess superior wear resistance compared to other typically similar Fe-based amorphous coatings. The tribological behaviors evolve with the combination of normal load and sliding velocity. Herein, the dominant wear mechanisms are delamination wear and oxidation wear. With an increase in normal load and sliding velocity, the abrasive wear is gradually weakened, the formation of oxide films on the worn surfaces is facilitated, and wear debris is ground to powder. The oxide films suffer from fatigue wear with induced cracks undergoing reciprocating sliding effects.  相似文献   

7.
The influence of conventional extreme-pressure (EP) and anti-wear (AW) additives on the wear and friction behaviour of DLC coatings has been investigated. Special emphasis was put on exploring if it is most beneficial to coat only one or both the contacting surfaces and on when and how the coatings may improve the friction situation in sliding contact boundary lubricated systems. Tests were performed in a load-scanning test rig, which allows the normal load to gradually increase during the forward stroke and to correspondingly decrease during the reverse stroke. The sliding speed was set to 0.1 m/s, while the normal load was in the range between 140 and 1700 N (2.4–5.6 GPa).This investigation indicates that, under boundary lubrication conditions, addition of commercial AW and EP additives to PAO oil may significantly improve the tribological properties of DLC coatings. Furthermore, the DLC/steel combination was found to give a smoother running-in process and a better tribological performance than the DLC/DLC and steel/steel combination.  相似文献   

8.
In this work, the friction and wear properties of Kevlar pulp reinforced epoxy composites against GCr15 steel under dry sliding condition were evaluated on a reciprocating ball-on-block UMT-2MT tribometer. The effects of Kevlar pulp content on tribological properties of the composites were investigated. The worn surface morphologies of neat epoxy and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms discussed. The results show that the incorporation of Kevlar pulp into epoxy contributed to improve the friction and wear behavior considerably. The maximum wear reduction was obtained when the content of Kevlar pulp is 40 vol%. The friction coefficient of epoxy and its composites increased with load while increase in the sliding frequency induced a reverse effect. Fatigue wear and scuffing were notable for the neat epoxy. The fatigue cracks were greatly abated when the filler content was 40 vol%. The wear grooves appeared on the worn surface at higher filler content.  相似文献   

9.
Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1589-1599
This paper describes the tribological performance of diamond-like carbon (DLC) coatings deposited on AISI 440C steel substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process. A variety of analytic techniques were used to characterize the coatings, such as Raman spectroscopy, atomic force microscopy (AFM) and nano-indentation. The sliding wear and friction experiments were carried out by the conventional ball-on-disk tribometry against 100Cr6 steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). All the wear tests were conducted under dry sliding condition in ambient air for a total rotation cycle of 1 × 105 (sliding distance ∼2.2 km). Surfaces of the coatings and the steel balls were examined before and after the sliding wear tests. The DLC coatings that had been tested all showed relatively low values of friction coefficient, in the range of 0.1-0.2 at a steady-state stage, and low specific wear rates (on the order of 10−8 mm3/Nm). It was found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Plastic deformation became more evident on the coating surface during the sliding wear test at higher contact stresses. The friction-induced transformation of the coating surface into a graphite-like phase was revealed by micro-Raman analysis, and the flash temperature of the contact asperities was estimated. It was suggested that the structural transformation taking place within the wear tracks was mainly due to the formation of compact wear debris layer rather than the frictional heating effect. On the other hand, an adherent transfer layer (tribolayer) was formed on the counterface, which was closely related to the steady-state friction during sliding and the wear mechanisms. Fundamental knowledge combined with the present tribological study led to the conclusion that adhesive wear along with abrasion was probably the dominant wear mechanism for the DLC/steel sliding systems. Additionally, fatigue processes might also be involved in the wear of the coatings.  相似文献   

10.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

11.
研究了钢背衬碳纤维织物/环氧复合材料在环-环端面干摩擦状态下的摩擦学特性,考察了MoS2与石墨粉及其配比、衬层厚度、法向载荷对衬层干摩擦性能的影响,用扫描电子显微镜对衬层的磨损表面及对偶件45^#钢环表面进行了观察与分析。结果表明:厚度为1.5mm的试环衬层在摩擦过程中主要表现出粘结磨损特性,而含20%(质量分数)MoS2粉的0.6mm衬层表现出疲劳磨损与磨粒磨损特性。摩擦因数-时间特性曲线表明MoS2粉在降低衬层摩擦因数的同时能够抑制环氧树脂向对偶钢环表面的粘结;石墨对衬层的减摩效果优于MoS2粉,但摩擦温升引起树脂向偶件表面转移增多使得减摩效果大大降低;质量分数为33%的MoS2与石墨粉衬层表现出最佳的摩擦学性能,衬层摩擦因数具有随载荷先减小后上升的趋势。  相似文献   

12.
为提高采煤机滑靴在无油工况下的耐磨性,采用激光熔覆技术在45钢为基体上分别制备FeNiMo和FeNiMoSi涂层,并对其物相组成及硬度等进行分析。结果发现:制备的涂层结构致密,与基底保持了良好的冶金结合;FeNiMoSi涂层的平均硬度为438HV,分别约为基体(153HV)的2.8倍以及FeNiMo涂层(385HV)的1.1倍。通过往复式摩擦磨损试验机研究涂层的干摩擦磨损性能,并探讨其磨损机制。结果表明:随着载荷和滑动速度的增大,涂层的摩擦因数均呈现出减小的趋势;随着载荷的增大,涂层的磨损率逐渐升高;随着滑动速度的增大,FeNiMo涂层的磨损率出现先下降后上升的趋势,而FeNiMoSi涂层的磨损率则逐渐下降;涂层的磨损机制主要为磨粒磨损、塑性变形以及轻微的氧化磨损。总体来说,FeNiMoSi涂层相比FeNiMo涂层表现出更好的耐磨性能,这是因为涂层中Si元素的添加,不仅起到细晶强化作用,而且促进了FeSi金属间化合物相的生成。  相似文献   

13.
镍基合金喷熔层摩擦学行为与机制的研究   总被引:1,自引:0,他引:1  
采用热喷熔工艺制备了两种镍基合金喷熔层,并选用高锰钢、不锈钢作为对比材料,研究了镍基合金喷熔层的摩擦磨损性能。研究结果表明:镍基合金喷熔层具有良好的耐磨损性能和较低的摩擦系数。镍含量对喷熔层的摩擦学性能有显著影响,高镍含量的镍基合金,其耐磨性能明显优于低镍含量的镍基合金。在低速轻载条件下,镍基合金喷熔层的磨损机理为微观犁削;高速重载时,表现为粘着磨损和磨料磨损,其中高镍含量的喷熔层表面形成了致密的转移膜,有效地降低了磨损率。  相似文献   

14.
Industrial lubricants are invariably used with additives (with high sulfur and phosphorous contents) for tribological performance enhancement. However, these additives are environmentally very harmful. Hence, there is an urgent need to find alternate solutions for enhancing the tribological performance of lubricants and components without the use of harmful additives. The objective of this work is to investigate the feasibility of using polymer composite coatings in enhancing the tribological properties of steel surfaces in dry and base oil lubricated conditions. Pure epoxy and its composite (with 10?wt-% of graphene or graphite powder) films were coated onto steel substrates and tested under dry and base oil lubricated conditions. Friction and wear experiments were conducted on a ball on cylinder tribometer between polymer/composite coated cylindrical steel surface (shaft) and an uncoated steel ball as the counterface. Tests were conducted at various normal loads and speeds. In dry condition at 3 N load and 0.63?m s??1 sliding speed, the wear life of epoxy was increased by five times and coefficient of friction was nearly the same (0.18) on inclusion of graphene nanoparticle. In lubricated case, epoxy/graphene composite coating performed eight times and more than five times better than pure epoxy and epoxy/graphite respectively.  相似文献   

15.
A ferrous-based coating with significant chromium was fabricated on aluminum alloy substrate using a plasma spray technique. The tribological performance of the as-fabricated ferrous-based coating sliding against different coatings including Cr, CrN, TiN, and diamond-like carbon (DLC) in an engine oil environment were comparatively studied. Results showed that the high hardness of the sprayed ferrous-based coating was achieved due to the dispersion strengthening effect of Cr7C3 phase embedded in the austenite matrix. The ferrous-based coating exhibited low friction coefficients when coupled with these four coating counterparts, which could be attributed to the boundary lubricating effect of engine oil. However, both friction and wear of the ferrous-based coating were different when sliding against these different coating counterparts, which might be closely related to the surface roughness, self-lubricating effect, and mechanical properties of the coupled coatings. Ferrous-based coating sliding against CrN and DLC coatings exhibited good tribological performance in engine oil. The best coating counterpart for the ferrous-based coating in an engine was DLC coating.  相似文献   

16.
This work demonstrate how two different carbide coatings respond very differently to tribological stress and their very different ability to provide low friction tribofilms in dry sliding against steel. Both coatings, TiC and TiAlC, were deposited by DC-magnetron sputtering, but while the TiC is a thermodynamically stable coating, the TiAlC is made metastable with the addition of Al, and therefore releases carbon upon tribological testing. Thus, the TiAlC coating is shown to be self-lubricating on the atomic scale which makes very low friction achievable. The primary interest in this study is the differences in the tribofilms formed on the steel balls that have been sliding against the two coatings. Cross-section samples for transmission electron microscopy were extracted from the ball tribofilms using a focused ion beam instrument. X-ray photoelectron spectroscopy and Raman analysis were employed to provide information on the chemical and structural characteristics of the tribofilms. It was shown that tribofilms on steel balls largely inherit the structure and composition that evolve in the coating wear tracks, that the tribofilm microstructure greatly affects the friction level. It was also shown that tribofilm delamination, occurring with tribofilm growth, was initiated in weak ribbon like regions inside the tribofilm.  相似文献   

17.
Fei Zhou  Yuan Wang  Feng Liu  Yuedong Meng  Zhendong Dai 《Wear》2009,267(9-10):1581-1588
It is evident that the micro-arc oxidation (MAO) ceramic coatings often exhibit relatively high friction coefficients as sliding against many mating materials. To reduce the friction coefficient for the MAO coatings, the duplex MAO/CrN coatings were deposited on 2024Al alloy using combined micro-arc oxidation and reactive radio frequency magnetron sputtering. The microstructure and phase of the duplex coatings were observed and determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The friction and wear behaviors of the duplex coatings sliding against Si3N4 balls in air, water and oil were investigated using a ball-on-disk tribometer. The wear rate of the duplex coating was determined by non-contact optical profilometer and the wear tracks on the duplex coatings were observed by SEM. The results showed the CrN coatings mainly consisted of Cr, CrN and Cr2N phases. The duplex coatings/Si3N4 tribopair exhibited the highest friction coefficient in air, while displayed the lowest friction coefficient in oil. When the normal load and the sliding speed increased, the friction coefficient in air increased from 0.65 to 0.72, whereas decreased from 0.58 to 0.36 in water and 0.20 to 0.08 in oil. The specific wear rates for the duplex coatings in air were higher than those in oil. In comparison to the MAO coatings, the duplex MAO/CrN coatings displayed excellent tribological properties under the same conditions.  相似文献   

18.
《Wear》2002,252(7-8):557-565
In this paper, a physical vapour deposited (PVD) deposited TiB2 coating is compared in dry sliding with commercial PVD titanium nitride (TiN), titanium aluminium nitride (TiAlN) and titanium carbonitirde (TiCN) as to frictional properties and tendency of counter material pick-up. The aim is to investigate if the superior behaviour of the TiB2 coating experienced in severe sliding applications against aluminium alloys can be extended to other materials with a similarly poor tribological characteristics.A new tribological test for sliding contact has been used. The test configuration involves two crossed elongated cylindrical test specimens which are forced to slide axially against each other at a constant sliding speed and a gradually increasing normal load, while recording the friction. The evaluation is performed by correlating the friction history with the width, topography and composition of the sliding tracks as detected by optical and scanning electron microscopy.Coated cemented carbide (CC) test cylinders have been slid against cylinders of a Ti alloy (Ti–6Al–4V), an Al alloy (Al 7075) and Inconel 718. It was shown that the TiB2 surface displayed superior friction and anti-sticking properties, when tested against the aluminium alloy. Against the Ti and Inconel alloys no major difference between the coatings could be found. Instead, it is concluded that the friction coefficient is determined by the plastic properties of the counter material since a complete transfer layer instantly builds up on the coating.It proved possible to estimate the friction force from the width of the sliding tracks, the Vickers hardness of the counter material and simple plastic considerations. This estimation also verifies the unexpectedly low friction of all coatings against the Ti alloy.  相似文献   

19.
Aromatic thermosetting polyester (ATSP)- and polytetrafluoroethylene (PTFE)-blended composites have been shown to exhibit improved tribological performance with low wear and low friction. In this article, pure ATSP films were coated on aluminum substrates and tested as a potential protective tribological coating. The tribological performance of this coating was tested against steel, using pure sliding sphere-on-disk experiments. A fluoroadditive powder (solid lubricant) was also added to further enhance the ATSP film wear and friction properties. For comparison, a commercially available PTFE-based coating was tested under the same conditions. Results show that the ATSP/fluoroadditive film has comparable coefficient of friction to the commercial coating, but significantly lower wear. Surface analysis techniques were employed to investigate the low-friction and low-wear mechanisms seen with the ATSP/fluoroadditive. Specifically TOF-SIMS depth-profiling showed that there is a high density of fluorine element within the wear track and penetrates well below the surface of the wear track.  相似文献   

20.
Rolf Waesche  Manfred Hartelt 《Wear》2009,267(12):2208-825
The high temperature tribological performance of tetrahedral amorphous carbon coatings has been analyzed at elevated temperatures up to 250 °C in air against three different counterbody materials—steel 100Cr6, α-alumina and silicon nitride. The results show that the counterbody material influences the friction and wear behavior and therefore coating life time strongly. This effect is well known for these coatings at room temperature under dry environmental conditions, equivalent to conditions above 100 °C when water molecules desorb from the surface. However, the sharp difference in tribological performance between silicon nitride on the one hand and alumina and steel on the other hand cannot be understood in this context. Analyzing the friction behavior during the running-in phase, it is evident that only alumina and steel form a stable interface with constant low friction and relatively low wear rates. Silicon nitride forms an unstable interface with fluctuating COF and relatively high wear rates due to its own inherent tendency to tribo-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号