首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cytokines produced by cells of the immune system, including macrophages, can influence inflammatory responses to viral infection. This has been exploited by viruses, which have developed strategies to direct the immune response towards ineffective responses. African swine fever virus (ASFV) is a double-stranded DNA virus that infects macrophages of domestic swine. In this study, primary cells of monocyte macrophage lineage were obtained from the lungs, peritoneum or blood of domestic swine and, after infection with ASFV, supernatants were tested for cytokines using biological assays. The cytokine transforming growth factor-beta (TGF-beta) was detected after infection of macrophage preparations, but tumour necrosis factor (TNF) and interleukin-1 (IL-1) were not detected. ASFV-infected and uninfected macrophage populations were also tested to assess their ability to respond to cytokines by enhancing production of superoxide in the respiratory burst mechanism. Responses to interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS) were suppressed in macrophage populations infected with virus, even at low multiplicities of infection. Addition of TGF-beta to uninfected macrophages resulted in a similar suppression of response, but antibody to TGF-beta did not prevent suppression induced by virus. These results are discussed in relation to the pathology of African swine fever.  相似文献   

2.
African swine fever virus (ASFV) specific, cytotoxic T lymphocyte (CTL) activity has been studied in a protection model in which SLA inbred miniature swine are experimentally inoculated with a naturally occurring, non-fatal ASFV isolate (NHV). Peripheral blood mononuclear cells (PBMC) from such infected swine show significant activity in CTL assays, using cultured ASFV-infected porcine blood derived macrophages as target cells. This CTL activity is elicited from PBMC by in vitro restimulation of effector cells with low doses (multiplicity of infection = 0.1) of the homologous virus isolate for 48 to 72 h. For SLAc/c effectors, this CTL activity appears to be SLA class I restricted because (1) blocking target cell antigens with monoclonal antibodies (mAb) against SLA class I antigens causes a major reduction in CTL activity; (2) there is preferential lysis of SLA class I matched, ASFV infected targets; and (3) depletion of effector cells with CD8 specific mAb and complement causes a reduction in CTL activity. The CTL activity is ASFV specific for all pigs tested in that infected macrophages are preferentially lysed as compared to normal (non-infected) cultured macrophages or macrophages infected with hog cholera virus (HCV). Lysis of macrophages infected with different ASFV isolates revealed that there is marked lysis of macrophages infected with the virulent L60 isolate but less lysis of macrophages infected with the DR-II and Tengani isolates. In summary, our data show that ASFV specific CTL activity is triggered in swine infected with the NHV ASFV isolate.  相似文献   

3.
This report shows that African swine fever virus (ASFV)--a large DNA-containing virus--synthesizes a polyprotein to produce several of its structural proteins. By immunoprecipitation analysis, we have found that ASFV polyprotein is a 220 kDa myristoylated polypeptide (pp220) which, after proteolytic processing, gives rise to four major structural proteins: p150, p37, p34 and p14. Processing of the ASFV polyprotein takes place at the consensus sequence Gly-Gly-X and occurs through an ordered cascade of proteolytic cleavages. So far, polyprotein processing as a mechanism of gene expression had been found only in positive-strand RNA viruses and retroviruses. According to the results presented here, ASFV is the first example of a DNA virus that synthesizes a polyprotein as a strategy of gene expression.  相似文献   

4.
A method to study the function of individual African swine fever virus (ASFV) gene products utilizing the Escherichia coli lac repressor-operator system has been developed. Recombinant viruses containing both the lacI gene encoding the lac repressor and a strong virus late promoter modified by the insertion of one or two copies of the lac operator sequence at various positions were constructed. The ability of each modified promoter to regulate expression of the firefly luciferase gene was assayed in the presence and in the absence of the inducer isopropyl beta-D-thiogalactoside (IPTG). Induction and repression of gene activity were dependent on the position(s) of the operator(s) with respect to the promoter and on the number of operators inserted. The ability of this system to regulate the expression of ASFV genes was analyzed by constructing a recombinant virus inducibly expressing the major capsid protein p72. Electron microscopy analysis revealed that under nonpermissive conditions, electron-dense membrane-like structures accumulated in the viral factories and capsid formation was inhibited. Induction of p72 expression allowed the progressive building of the capsid on these structures, leading to assembly of ASFV particles. The results of this report demonstrate that the transferred inducible expression system is a powerful tool for analyzing the function of ASFV genes.  相似文献   

5.
6.
The African swine fever virus (ASFV) open reading frame A179L, which is similar to the human proto-oncogene bcl-2, has been cloned and expressed in vaccinia virus under control of the pEIL synthetic early/late promoter. The A179L gene product prevented cell death in HeLa and BSC-40 cells doubly infected with another recombinant vaccinia virus expressing the interferon-induced double-stranded RNA-activated protein kinase (p68 kinase), which activates a rapid cell death characteristic of apoptosis. This finding suggests that the A179L gene has a function similar to that of bcl-2 in preventing apoptosis and may play an important role during productive ASFV infection.  相似文献   

7.
We established a reverse genetics system for the nonstructural (NS) gene segment of influenza A virus. This system is based on the use of the temperature-sensitive (ts) reassortant virus 25A-1. The 25A-1 virus contains the NS gene from influenza A/Leningrad/134/57 virus and the remaining gene segments from A/Puerto Rico (PR)/8/34 virus. This particular gene constellation was found to be responsible for the ts phenotype. For reverse genetics of the NS gene, a plasmid-derived NS gene from influenza A/PR/8/34 virus was ribonucleoprotein transfected into cells that were previously infected with the 25A-1 virus. Two subsequent passages of the transfection supernatant at 40 degreesC selected viruses containing the transfected NS gene derived from A/PR/8/34 virus. The high efficiency of the selection process permitted the rescue of transfectant viruses with large deletions of the C-terminal part of the NS1 protein. Viable transfectant viruses containing the N-terminal 124, 80, or 38 amino acids of the NS1 protein were obtained. Whereas all deletion mutants grew to high titers in Vero cells, growth on Madin-Darby canine kidney (MDCK) cells and replication in mice decreased with increasing length of the deletions. In Vero cells expression levels of viral proteins of the deletion mutants were similar to those of the wild type. In contrast, in MDCK cells the level of the M1 protein was significantly reduced for the deletion mutants.  相似文献   

8.
9.
10.
An examination by electron microscopy of the viral assembly sites in Vero cells infected with African swine fever virus showed the presence of large clusters of mitochondria located in their proximity. These clusters surround viral factories that contain assembling particles but not factories where only precursor membranes are seen. Immunofluorescence microscopy revealed that these accumulations of mitochondria are originated by a massive migration of the organelle to the virus assembly sites. Virus infection also promoted the induction of the mitochondrial stress-responsive proteins p74 and cpn 60 together with a dramatic shift in the ultrastructural morphology of the mitochondria toward that characteristic of actively respiring organelles. The clustering of mitochondria around the viral factory was blocked in the presence of the microtubule-disassembling drug nocodazole, indicating that these filaments are implicated in the transport of the mitochondria to the virus assembly sites. The results presented are consistent with a role for the mitochondria in supplying the energy that the virus morphogenetic processes may require and make of the African swine fever virus-infected cell a paradigm to investigate the mechanisms involved in the sorting of mitochondria within the cell.  相似文献   

11.
The lipids of highly purified african swine fever virus (ASFV) propagated in porcine bone marrow cells were observed to contain 25.6% phospholipids, 9.7% monoglycerides, 14.1% cholesterol, 17.8% free fatty acids, 14.4% diglycerides, 13.6% triglycerides, and 6.7% cholesterol ethers. Diethyl ether extracts mono-, di-, triglycerides, free fatty acids, 50% of cholesterol and cholesterol ethers, and 25% of phospholipids from the virus. Analysis of the 14C-sodiumacetate incorporation into viral, cellular and plasmatic membrane lipids has shown that (a) different strains of ATV ASFV have identical composition; (b) viral lipid composition is determined by lipid composition of the infected cells plasmatic membrane; (c) the viral lipid composition is influenced by cells used for propagation of the ASFV.  相似文献   

12.
Double subgenomic Sindbis (dsSIN) viruses were engineered to transduce mosquito cells with antisense RNA derived either from the premembrane (prM) or polymerase (NS5) coding regions of the 17D vaccine strain of yellow fever virus (YFV). Aedes albopictus C6/36 cells were infected at high multiplicities of infection (MOI) with each dsSIN virus. Forty-eight hours later, the transduced cells were challenged with an MOI of 0.1 of the Asibi strain of YFV. At 72-hr postchallenge, the cells were assayed by immunofluorescence for the presence of YFV antigen. Cells transduced with prM or NS5 antisense RNAs derived from the YFV genome displayed no YFV-specific antigens. In contrast, cells infected with control dsSIN viruses that expressed no antisense RNA or dengue virus-derived antisense RNAs were permissive for the challenge virus. To analyze resistance in the mosquito, five log10 50% tissue culture infective doses (TCID50) of each dsSIN virus and three log10TCID50 of either a West African (BA-55) or South American (1899/81) strain of wild-type YFV were coinoculated into Ae. aegypti. Mosquitoes transduced with effector RNAs targeting the prM or NS5 gene regions did not transmit West African YFV and poorly transmitted the South American strain of YFV.  相似文献   

13.
We have analyzed the production of tumor necrosis factor alpha (TNF-alpha) induced by in vitro infection with African swine fever (ASF) virus (ASFV) and the systemic and local release of this inflammatory cytokine upon in vivo infection. An early increase in TNF-alpha mRNA expression was detected in ASFV-infected alveolar macrophages, and high levels of TNF-alpha protein were detected by ELISA in culture supernatants from these cells. When animals were experimentally infected with a virulent isolate (E-75), enhanced TNF-alpha expression in mainly affected organs correlated with viral protein expression. Finally, elevated levels of TNF-alpha were detected in serum, corresponding to the onset of clinical signs. TNF-alpha has been reported to be critically involved in the pathogenesis of major clinical events in ASF, such as intravascular coagulation, tissue injury, apoptosis, and shock. In the present study, TNF-alpha containing supernatants from ASFV-infected cultures induced apoptosis in uninfected lymphocytes; this effect was partially abrogated by preincubation with an anti-TNF-alpha specific antibody. These results suggest a relevant role for TNF-alpha in the pathogenesis of ASF.  相似文献   

14.
To evaluate the contribution of glycoprotein E (gE), thymidine kinase (TK), and the US3-encoded protein kinase (PK) in the induction of protective immunity to pseudorabies virus (PRV), we intranasally inoculated pigs, the natural host of this virus, with mutant PRV strains in which the genes encoding these proteins were inactivated. Both single and double mutants were constructed. Of these proteins, gE has previously been demonstrated to induce antibodies (in mice and pigs), which require complement to neutralize the virus, and helper T cell responses (in mice). PK and TK have thus far not been reported to induce B or T cell responses. All mutants had a strongly reduced virulence for pigs in comparison with wild-type (wt) PRV. After primary infection, most virus was excreted by wt PRV-inoculated animals. Animals inoculated with gE-PK- and gE-TK- double mutants excreted less virus than animals inoculated with gE-, PK-, and TK- single mutants. After challenge infection with the virulent PRV strain NIA-3, no virus was excreted by wt PRV- and PK- mutant-immunized animals, indicating complete protective immunity. Only one of seven gE- and two of seven TK- mutant-immunized animals excreted virus after the challenge inoculation. In contrast, most animals immunized with the gE-PK- or gE-TK- double mutants excreted virus after the challenge inoculation. Daily mean virus excretion after challenge infection was inversely correlated with daily mean virus excretion after primary infection. In most animals, lack of virus excretion was associated with lack of secondary antibody responses, probably attributable to inadequate stimulation of memory B cells as a consequence of early elimination of viral antigen. Thus, inactivation of gE, TK, and PK all affected the immunogenicity of PRV and the effect of gE and TK and gE and PK inactivation appeared synergistic. We found no simple correlation between in vitro growth properties of the mutants and their immunogenic capacity. Strains lacking PK reached lower end titers in vitro than the other mutants. The most likely explanation for the lower protective capacity of some of the mutants appears their reduced replicative capacity in some cells or tissues in vivo, rather than a loss of particular epitopes.  相似文献   

15.
The Copper isolate of bovine herpesvirus 1 (BHV-1) was used to produce a thymidine kinase-negative (TK-) recombinant by insertion of a beta-galactosidase (bgal) expression cassette into the TK coding region. The recombinant virus (TK- bgal+) was tested for abortifacient activity in cattle by inoculation of 5 pregnant heifers at 25 to 29 weeks gestation. Five additional heifers were inoculated with the Cooper TK-positive (TK+) virus to serve as controls. After inoculation, both groups of heifers developed similar febrile responses and neutralizing antibody titers. Virus was isolated from blood of all heifers during the first postinoculation (PI) week, and isolation frequencies were similar for both groups. In contrast, whereas virus was isolated from many of the nasal and vaginal swab specimens of heifers inoculated with TK+ virus, only rare virus isolations were made from the heifers given TK- bgal+ virus. All heifers inoculated with TK+ virus aborted between PI days 19 and 35. The finding of characteristic microscopic lesions and viral antigen in fetal tissues indicated that the abortions were caused by BHV-1 infection. Virus was isolated from 3 fetuses, and all isolates were TK+ virus. Two heifers inoculated with TK- bgal+ virus aborted at PI days 25 and 39. Fetal tissues had typical BHV-1 microscopic lesions and viral antigen. Virus was isolated from blood of both fetuses, and the isolates were TK- bgal+. Results of this study indicate that inactivation of the TK gene reduces, but does not eliminate, the abortifacient activity of BHV-1.  相似文献   

16.
17.
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.  相似文献   

18.
African swine fever virus (ASFV) encodes a novel DNA polymerase, constituted of only 174 amino acids, belonging to the polymerase (pol) X family of DNA polymerases. Biochemical analyses of the purified enzyme indicate that ASFV pol X is a monomeric DNA-directed DNA polymerase, highly distributive, lacking a proofreading 3'-5'-exonuclease, and with a poor discrimination against dideoxynucleotides. A multiple alignment of family X DNA polymerases, together with the extrapolation to the crystal structure of mammalian DNA polymerase beta (pol beta), showed the conservation in ASFV pol X of the most critical residues involved in DNA binding, nucleotide binding, and catalysis of the polymerization reaction. Therefore, the 20-kDa ASFV pol X most likely represents the minimal functional version of an evolutionarily conserved pol beta-type DNA polymerase core, constituted by only the "palm" and "thumb" subdomains. It is worth noting that such an "unfingered" DNA polymerase is able to handle templated DNA polymerization with a considerable high fidelity at the base discrimination level. Base excision repair is considered to be a cellular defense mechanism repairing modified bases in DNA. Interestingly, the fact that ASFV pol X is able to conduct filling of a single nucleotide gap points to a putative role in base excision repair during the ASFV life cycle.  相似文献   

19.
20.
An antigen-capture enzyme immunoassay (EIA) was developed to detect classical swine fever virus (CSFV) antigen directly from 10% w/v tissue suspension. The assay, based on the sandwich principle, uses a biotinylated monoclonal antibody bound to streptavidin-coated microplates as the capture system and a swine anti-CSFV antibody and rabbit anti-swine HRPO-conjugate as the detector system. The antigen-capture EIA was compared with conventional virus isolation and polymerase chain reaction (PCR) for detection of CSFV in tissues. The ability of the antigen-capture EIA to discriminate classical swine fever (CSF) from bovine viral diarrhea and African swine fever viruses was also tested. The assay was shown to detect 21 different strains of CSFV and was unreactive with tissues from uninfected animals. Signal to noise (S/N) ratios were calculated from the EIA absorbance values. Readings from samples positive by virus isolation (n = 47) averaged a S/N ratio of 5.34. In contrast, samples negative by virus isolation (n = 96) demonstrated a mean S/N ratio of 0.16. At S/N cut-off value of 1.0, all samples that yield virus isolation and PCR negative result were negative in the antigen-capture EIA. Compared with virus propagation in tissue culture using PK15 cells (followed by indirect peroxidase assay detection) and PCR, the EIA had a specificity of 98.7% and a sensitivity of 91.4%. The EIA is simple, can be performed in 4 h and lends itself to automation for screening of tissues sample from pigs suspected of CSFV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号