首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-organizing map (SOM) and neural gas (NG) and generalizations thereof such as the generative topographic map constitute popular algorithms to represent data by means of prototypes arranged on a (hopefully) topology representing map. Most standard methods rely on the Euclidean metric, hence the resulting clusters tend to have isotropic form and they cannot account for local distortions or correlations of data. For this reason, several proposals exist in the literature which extend prototype-based clustering towards more general models which, for example, incorporate local principal directions into the winner computation. This allows to represent data faithfully using less prototypes. In this contribution, we establish a link of models which rely on local principal components (PCA), matrix learning, and a formal cost function of NG and SOM which allows to show convergence of the algorithm. For this purpose, we consider an extension of prototype-based clustering algorithms such as NG and SOM towards a more general metric which is given by a full adaptive matrix such that ellipsoidal clusters are accounted for. The approach is derived from a natural extension of the standard cost functions of NG and SOM (in the form of Heskes). We obtain batch optimization learning rules for prototype and matrix adaptation based on these generalized cost functions and we show convergence of the algorithm. The batch optimization schemes can be interpreted as local principal component analysis (PCA) and the local eigenvectors correspond to the main axes of the ellipsoidal clusters. Thus, this approach provides a cost function associated to proposals in the literature which combine SOM or NG with local PCA models. We demonstrate the behavior of matrix NG and SOM in several benchmark examples and in an application to image compression.  相似文献   

2.
Recursive PCA for adaptive process monitoring   总被引:3,自引:0,他引:3  
While principal component analysis (PCA) has found wide application in process monitoring, slow and normal process changes often occur in real processes, which lead to false alarms for a fixed-model monitoring approach. In this paper, we propose two recursive PCA algorithms for adaptive process monitoring. The paper starts with an efficient approach to updating the correlation matrix recursively. The algorithms, using rank-one modification and Lanczos tridiagonalization, are then proposed and their computational complexity is compared. The number of principal components and the confidence limits for process monitoring are also determined recursively. A complete adaptive monitoring algorithm that addresses the issues of missing values and outlines is presented. Finally, the proposed algorithms are applied to a rapid thermal annealing process in semiconductor processing for adaptive monitoring.  相似文献   

3.
Dynamics of Generalized PCA and MCA Learning Algorithms   总被引:1,自引:0,他引:1  
Principal component analysis (PCA) and minor component analysis (MCA) are two important statistical tools which have many applications in the fields of signal processing and data analysis. PCA and MCA neural networks (NNs) can be used to online extract principal component and minor component from input data. It is interesting to develop generalized learning algorithms of PCA and MCA NNs. Some novel generalized PCA and MCA learning algorithms are proposed in this paper. Convergence of PCA and MCA learning algorithms is an essential issue in practical applications. Traditionally, the convergence is studied via deterministic continuous-time (DCT) method. The DCT method requires the learning rate of the algorithms to approach to zero, which is not realistic in many practical applications. In this paper, deterministic discrete-time (DDT) method is used to study the dynamical behaviors of the proposed algorithms. The DDT method is more reasonable for the convergence analysis since it does not require constraints as that of the DCT method. It is proven that under some mild conditions, the weight vector in these proposed algorithms will converge exponentially to principal or minor component. Simulation results are further used to illustrate the theoretical results.  相似文献   

4.
Recently, many unified learning algorithms have been developed to solve the task of principal component analysis (PCA) and minor component analysis (MCA). These unified algorithms can be used to extract principal component and if altered simply by the sign, it can also serve as a minor component extractor. This is of practical significance in the implementations of algorithms. Convergence of the existing unified algorithms is guaranteed only under the condition that the learning rates of algorithms approach zero, which is impractical in many practical applications. In this paper, we propose a unified PCA & MCA algorithm with a constant learning rate, and derive the sufficient conditions to guarantee convergence via analyzing the discrete-time dynamics of the proposed algorithm. The achieved theoretical results lay a solid foundation for the applications of our proposed algorithm.  相似文献   

5.
This paper applies statistical physics to the problem of robust principal component analysis (PCA). The commonly used PCA learning rules are first related to energy functions. These functions are generalized by adding a binary decision field with a given prior distribution so that outliers in the data are dealt with explicitly in order to make PCA robust. Each of the generalized energy functions is then used to define a Gibbs distribution from which a marginal distribution is obtained by summing over the binary decision field. The marginal distribution defines an effective energy function, from which self-organizing rules have been developed for robust PCA. Under the presence of outliers, both the standard PCA methods and the existing self-organizing PCA rules studied in the literature of neural networks perform quite poorly. By contrast, the robust rules proposed here resist outliers well and perform excellently for fulfilling various PCA-like tasks such as obtaining the first principal component vector, the first k principal component vectors, and directly finding the subspace spanned by the first k vector principal component vectors without solving for each vector individually. Comparative experiments have been made, and the results show that the authors' robust rules improve the performances of the existing PCA algorithms significantly when outliers are present.  相似文献   

6.
Mixture of local principal component analysis (PCA) has attracted attention due to a number of benefits over global PCA. The performance of a mixture model usually depends on the data partition and local linear fitting. In this paper, we propose a mixture model which has the properties of optimal data partition and robust local fitting. Data partition is realized by a soft competition algorithm called neural 'gas' and robust local linear fitting is approached by a nonlinear extension of PCA learning algorithm. Based on this mixture model, we describe a modular classification scheme for handwritten digit recognition, in which each module or network models the manifold of one of ten digit classes. Experiments demonstrate a very high recognition rate.  相似文献   

7.
Recently, many dimensionality reduction algorithms, including local methods and global methods, have been presented. The representative local linear methods are locally linear embedding (LLE) and linear preserving projections (LPP), which seek to find an embedding space that preserves local information to explore the intrinsic characteristics of high dimensional data. However, both of them still fail to nicely deal with the sparsely sampled or noise contaminated datasets, where the local neighborhood structure is critically distorted. On the contrary, principal component analysis (PCA), the most frequently used global method, preserves the total variance by maximizing the trace of feature variance matrix. But PCA cannot preserve local information due to pursuing maximal variance. In order to integrate the locality and globality together and avoid the drawback in LLE and PCA, in this paper, inspired by the dimensionality reduction methods of LLE and PCA, we propose a new dimensionality reduction method for face recognition, namely, unsupervised linear difference projection (ULDP). This approach can be regarded as the integration of a local approach (LLE) and a global approach (PCA), so that it has better performance and robustness in applications. Experimental results on the ORL, YALE and AR face databases show the effectiveness of the proposed method on face recognition.  相似文献   

8.
Currently, large data streams are constantly being generated in diverse environments, and continuous storage of the data and periodic batch-type principal component analysis (PCA) are becoming increasingly difficult. Various online PCA algorithms have been proposed to solve this problem. In this study, we propose an online PCA methodology based on online eigenvector transformation with the moving average of the data stream that can reflect concept drift. We compared the network intrusion detection performance based on online transformation of eigenvectors with that of offline methods by applying three machine learning algorithms. Both online and offline methods demonstrated excellent performance in terms of precision. However, in terms of the recall ratio, the performance of the proposed methodology with integrated online eigenvector transformation was better; thus, the F1-measure also indicated better performance. The visualization of the principal component score shows the effectiveness of our method.  相似文献   

9.
Neural network algorithms on principal component analysis (PCA) and minor component analysis (MCA) are of importance in signal processing. Unified (dual purpose) algorithm is capable of both PCA and MCA, thus it is valuable for reducing the complexity and the cost of hardware implementations. Coupled algorithm can mitigate the speed-stability problem which exists in most noncoupled algorithms. Though unified algorithm and coupled algorithm have these advantages compared with single purpose algorithm and noncoupled algorithm, respectively, there are only few of unified algorithms and coupled algorithms have been proposed. Moreover, to the best of the authors’ knowledge, there is no algorithm which is both unified and coupled has been proposed. In this paper, based on a novel information criterion, we propose two self-stabilizing algorithms which are both unified and coupled. In the derivation of our algorithms, it is easier to obtain the results compared with traditional methods, because it is not needed to calculate the inverse Hessian matrix. Experiment results show that the proposed algorithms perform better than existing coupled algorithms and unified algorithms.  相似文献   

10.
In this paper, we first propose a differential equation for the generalized eigenvalue problem. We prove that the stable points of this differential equation are the eigenvectors corresponding to the largest eigenvalue. Based on this generalized differential equation, a class of principal component analysis (PCA) and minor component analysis (MCA) learning algorithms can be obtained. We demonstrate that many existing PCA and MCA learning algorithms are special cases of this class, and this class includes some new and simpler MCA learning algorithms. Our results show that all the learning algorithms of this class have the same order of convergence speed, and they are robust to implementation error.  相似文献   

11.
Many problems in information processing involve some form of dimensionality reduction, such as face recognition, image/text retrieval, data visualization, etc. The typical linear dimensionality reduction algorithms include principal component analysis (PCA), random projection, locality-preserving projection (LPP), etc. These techniques are generally unsupervised which allows them to model data in the absence of labels or categories. In this paper, we propose a semi-supervised subspace learning algorithm for image retrieval. In relevance feedback-driven image retrieval system, the user-provided information can be used to better describe the intrinsic semantic relationships between images. Our algorithm is fundamentally based on LPP which can incorporate user's relevance feedbacks. As the user's feedbacks are accumulated, we can ultimately obtain a semantic subspace in which different semantic classes can be best separated and the retrieval performance can be enhanced. We compared our proposed algorithm to PCA and the standard LPP. Experimental results on a large collection of images have shown the effectiveness and efficiency of our proposed algorithm.  相似文献   

12.
Principal/minor component analysis(PCA/MCA),generalized principal/minor component analysis(GPCA/GMCA),and singular value decomposition(SVD)algorithms are important techniques for feature extraction.In the convergence analysis of these algorithms,the deterministic discrete-time(DDT)method can reveal the dynamic behavior of PCA/MCA and GPCA/GMCA algorithms effectively.However,the dynamic behavior of SVD algorithms has not been studied quantitatively because of their special structure.In this paper,for the first time,we utilize the advantages of the DDT method in PCA algorithms analysis to study the dynamics of SVD algorithms.First,taking the cross-coupled Hebbian algorithm as an example,by concatenating the two cross-coupled variables into a single vector,we successfully get a PCA-like DDT system.Second,we analyze the discrete-time dynamic behavior and stability of the PCA-like DDT system in detail based on the DDT method,and obtain the boundedness of the weight vectors and learning rate.Moreover,further discussion shows the universality of the proposed method for analyzing other SVD algorithms.As a result,the proposed method provides a new way to study the dynamical convergence properties of SVD algorithms.  相似文献   

13.
Algorithms for accelerated convergence of adaptive PCA   总被引:3,自引:0,他引:3  
We derive and discuss adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja and Karhunen (1985), Sanger (1989), and Xu (1993). It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: (1) gradient descent; (2) steepest descent; (3) conjugate direction; and (4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods. We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.  相似文献   

14.
A class of neural networks for independent component analysis   总被引:26,自引:0,他引:26  
Independent component analysis (ICA) is a recently developed, useful extension of standard principal component analysis (PCA). The ICA model is utilized mainly in blind separation of unknown source signals from their linear mixtures. In this application only the source signals which correspond to the coefficients of the ICA expansion are of interest. In this paper, we propose neural structures related to multilayer feedforward networks for performing complete ICA. The basic ICA network consists of whitening, separation, and basis vector estimation layers. It can be used for both blind source separation and estimation of the basis vectors of ICA. We consider learning algorithms for each layer, and modify our previous nonlinear PCA type algorithms so that their separation capabilities are greatly improved. The proposed class of networks yields good results in test examples with both artificial and real-world data.  相似文献   

15.
Learning Linear and Nonlinear PCA with Linear Programming   总被引:1,自引:1,他引:0  
An SVM-like framework provides a novel way to learn linear principal component analysis (PCA). Actually it is a weighted PCA and leads to a semi-definite optimization problem (SDP). In this paper, we learn linear and nonlinear PCA with linear programming problems, which are easy to be solved and can obtain the unique global solution. Moreover, two algorithms for learning linear and nonlinear PCA are constructed, and all principal components can be obtained. To verify the performance of the proposed method, a series of experiments on artificial datasets and UCI benchmark datasets are accomplished. Simulation results demonstrate that the proposed method can compete with or outperform the standard PCA and kernel PCA (KPCA) in generalization ability but with much less memory and time consuming.  相似文献   

16.
通过分析在电子商务环境下Web挖掘的现状,考虑到Web数据的海量性和高维度性对抽取隐含的、事先未知的知识所带来的复杂性和维数灾,在普通K均值聚类、PSO聚类和K均值与PSO混合聚类算法的基础上,提出了一种将主成分分析与PSO混合聚类算法相结合的模型来对Web服务器中的日志文件进行聚类分析,将抽取的相关Web数据进行主成分分析,分析结果作为PSO混合聚类算法的输入数据,这样不仅减少了输入变量的维数,减少聚类的规模,而且保留了原始变量的主要信息,消除变量之间的多重共线性,为具有海量性、高维度性、异构性等特点的  相似文献   

17.
This paper presents a unified theory of a class of learning neural nets for principal component analysis (PCA) and minor component analysis (MCA). First, some fundamental properties are addressed which all neural nets in the class have in common. Second, a subclass called the generalized asymmetric learning algorithm is investigated, and the kind of asymmetric structure which is required in general to obtain the individual eigenvectors of the correlation matrix of a data sequence is clarified. Third, focusing on a single-neuron model, a systematic way of deriving both PCA and MCA learning algorithms is shown, through which a relation between the normalization in PCA algorithms and that in MCA algorithms is revealed. This work was presented, in part, at the Third International Symposium on Artificial Life and Robotics, Oita, Japan, January 19–21, 1998  相似文献   

18.
Fuzzy$c$-means (FCM)-type fuzzy clustering approaches are closely related to Gaussian mixture models (GMMs) and EM-like algorithms have been used in FCM clustering with regularized objective functions. Especially, FCM with regularization by Kullback–Leibler information (KLFCM) is a fuzzy counterpart of GMMs. In this paper, we propose to apply probabilistic principal component analysis (PCA) mixture models to linear clustering following a discussion on the relationship between local PCA and linear fuzzy clustering. Although the proposed method is a kind of the constrained model of KLFCM, the algorithm includes the fuzzy$c$-varieties (FCV) algorithm as a special case, and the algorithm can be regarded as a modified FCV algorithm with regularization by K–L information. Numerical experiments demonstrate that the proposed clustering algorithm is more flexible than the maximum likelihood approaches and is useful for capturing local substructures properly.  相似文献   

19.
An adaptive learning algorithm for principal component analysis   总被引:2,自引:0,他引:2  
Principal component analysis (PCA) is one of the most general purpose feature extraction methods. A variety of learning algorithms for PCA has been proposed. Many conventional algorithms, however, will either diverge or converge very slowly if learning rate parameters are not properly chosen. In this paper, an adaptive learning algorithm (ALA) for PCA is proposed. By adaptively selecting the learning rate parameters, we show that the m weight vectors in the ALA converge to the first m principle component vectors with almost the same rates. Comparing with the Sanger's generalized Hebbian algorithm (GHA), the ALA can quickly find the desired principal component vectors while the GHA fails to do so. Finally, simulation results are also included to illustrate the effectiveness of the ALA.  相似文献   

20.
In practice, many applications require a dimensionality reduction method to deal with the partially labeled problem. In this paper, we propose a semi-supervised dimensionality reduction framework, which can efficiently handle the unlabeled data. Under the framework, several classical methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), maximum margin criterion (MMC), locality preserving projections (LPP) and their corresponding kernel versions can be seen as special cases. For high-dimensional data, we can give a low-dimensional embedding result for both discriminating multi-class sub-manifolds and preserving local manifold structure. Experiments show that our algorithms can significantly improve the accuracy rates of the corresponding supervised and unsupervised approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号