首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Non-alcoholic fatty liver disease (NAFLD) is the fastest-growing liver disease in the world. Despite targeted agents which are needed to provide permanent benefits for patients with NAFLD, no drugs have been approved to treat NASH. Thyroid hormone is an important signaling molecule to maintain normal metabolism, and in vivo and vitro studies have shown that regulation of the 3,5,3’-triiodothyronine (T3)/ thyroid hormone receptor (TR) axis is beneficial not only for metabolic symptoms but also for the improvement of NAFLD and even for the repair of liver injury. However, the non-selective regulation of T3 to TR subtypes (TRα/TRβ) could cause unacceptable side effects represented by cardiotoxicity. To avoid deleterious effects, TRβ-selective thyromimetics were developed for NASH studies in recent decades. Herein, we will review the development of thyroid hormones and synthetic thyromimetics based on TR selectivity for NAFLD, and analyze the role of TR-targeted drugs for the treatment of NAFLD in the future.  相似文献   

2.
Thyroid hormones (THs) are key players in the endocrine system and play pivotal roles in carbohydrate and fat metabolism, protein synthesis, overall growth, and brain development. The thyroid gland predominantly produces thyroxine or 3,5,3′,5′-tetraiodothyronine (T4) as a prohormone; three isoforms of a mammalian selenoenzyme—iodothyronine deiodinase (DIO1, DIO2 and DIO3)—catalyze the regioselective deiodination of T4 to produce biologically active and inactive metabolites. Whereas DIO1 catalyzes both 5- and 5′-deiodination of T4, DIO2 and DIO3 selectively mediate 5- and 5′-deiodination, respectively. In this review we discuss the regioselective deiodination of THs in the presence of organochalcogen compounds. Naphthalene-based compounds containing sulfur and/or selenium at the peri positions mediate regioselective 5-deiodination of THs, detailed mechanistic studies having revealed that the heterolytic cleavage of the C−I bond is facilitated by the formation of cooperative Se/S ⋅⋅⋅ I halogen bonds and Se/S ⋅⋅⋅ Se chalcogen bonds. We also discuss the biomimetic deiodination of several TH metabolites, including sulfated THs, iodothyronamines, and iodotyrosines. A brief discussion on the dehalogenation of halogenated nucleosides and nucleobases in the presence of organochalcogen compounds is also included.  相似文献   

3.
Central nervous system (CNS) metastases are common in breast cancer (BC) patients and are particularly relevant as new treatments for BC are prolonging survival. Here, we review advances in the treatment of CNS metastases from BC, including radiotherapy, systemic therapies, and the evolving role of immunotherapy. The use of radiotherapy and chemotherapy is the cornerstone of treatment for CNS metastases. However, new targeted therapies have recently been developed, including anti-HER2 agents and antibody–drug conjugates that have presented promising results for the treatment of these patients.  相似文献   

4.
Secreted extracellular vesicles (EVs) are heterogeneous cell-derived membranous granules which carry a large diversity of molecules and participate in intercellular communication by transferring these molecules to target cells by endocytosis. In the last decade, EVs’ role in several pathological conditions, from etiology to disease progression or therapy evasion, has been consolidated, including in central nervous system (CNS)-related disorders. For this review, we performed a systematic search of original works published, reporting the presence of molecular components expressed in the CNS via EVs, which have been purified from plasma, serum or cerebrospinal fluid. Our aim is to provide a list of molecular EV components that have been identified from both nonpathological conditions and the most common CNS-related disorders. We discuss the methods used to isolate and enrich EVs from specific CNS-cells and the relevance of its components in each disease context.  相似文献   

5.
The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.  相似文献   

6.
The role of the autonomic nervous system in obesity and insulin-resistant conditions has been largely explored. However, the exact mechanisms involved in this relation have not been completely elucidated yet, since most of these mechanisms display a bi-directional effect. Insulin-resistance, for instance, can be caused by sympathetic activation, but, in turn, the associated hyperinsulinemia can activate the sympathetic branch of the autonomic nervous system. The picture is made even more complex by the implicated neural, hormonal and nutritional mechanisms. Among them, leptin plays a pivotal role, being involved not only in appetite regulation and glucose homeostasis but also in energy expenditure. The purpose of this review is to offer a comprehensive view of the complex interplay between leptin and the central nervous system, providing further insights on the impact of autonomic nervous system balance on adipose tissue and insulin-resistance. Furthermore, the link between the circadian clock and leptin and its effect on metabolism and energy balance will be evaluated.  相似文献   

7.
The need for long-lasting and transformative therapies for mucopolysaccharidoses (MPS) cannot be understated. Currently, many forms of MPS lack a specific treatment and in other cases available therapies, such as enzyme replacement therapy (ERT), do not reach important areas such as the central nervous system (CNS). The advent of newborn screening procedures represents a major step forward in early identification and treatment of individuals with MPS. However, the treatment of brain disease in neuronopathic MPS has been a major challenge to date, mainly because the blood brain barrier (BBB) prevents penetration of the brain by large molecules, including enzymes. Over the last years several novel experimental therapies for neuronopathic MPS have been investigated. Gene therapy and gene editing constitute potentially curative treatments. However, despite recent progress in the field, several considerations should be taken into account. This review focuses on the state of the art of in vivo and ex vivo gene therapy-based approaches targeting the CNS in neuronopathic MPS, discusses clinical trials conducted to date, and provides a vision for the future implications of these therapies for the medical community. Recent advances in the field, as well as limitations relating to efficacy, potential toxicity, and immunogenicity, are also discussed.  相似文献   

8.
Mercury is a severe environmental pollutant with neurotoxic effects, especially when exposed for long periods. Although there are several evidences regarding mercury toxicity, little is known about inorganic mercury (IHg) species and cerebellum, one of the main targets of mercury associated with the neurological symptomatology of mercurial poisoning. Besides that, the global proteomic profile assessment is a valuable tool to screen possible biomarkers and elucidate molecular targets of mercury neurotoxicity; however, the literature is still scarce. Thus, this study aimed to investigate the effects of long-term exposure to IHg in adult rats’ cerebellum and explore the modulation of the cerebellar proteome associated with biochemical and functional outcomes, providing evidence, in a translational perspective, of new mercury toxicity targets and possible biomarkers. Fifty-four adult rats were exposed to 0.375 mg/kg of HgCl2 or distilled water for 45 days using intragastric gavage. Then, the motor functions were evaluated by rotarod and inclined plane. The cerebellum was collected to quantify mercury levels, to assess the antioxidant activity against peroxyl radicals (ACAPs), the lipid peroxidation (LPO), the proteomic profile, the cell death nature by cytotoxicity and apoptosis, and the Purkinje cells density. The IHg exposure increased mercury levels in the cerebellum, reducing ACAP and increasing LPO. The proteomic approach revealed a total 419 proteins with different statuses of regulation, associated with different biological processes, such as synaptic signaling, energy metabolism and nervous system development, e.g., all these molecular changes are associated with increased cytotoxicity and apoptosis, with a neurodegenerative pattern on Purkinje cells layer and poor motor coordination and balance. In conclusion, all these findings feature a neurodegenerative process triggered by IHg in the cerebellum that culminated into motor functions deficits, which are associated with several molecular features and may be related to the clinical outcomes of people exposed to the toxicant.  相似文献   

9.
The central nervous system (CNS) consists of a heterogeneous population of cells with highly specialized functions. For optimal functioning of the CNS, in disease and in health, intricate communication between these cells is vital. One important mechanism of cellular communication is the release and uptake of extracellular vesicles (EVs). EVs are membrane enclosed particles actively released by cells, containing a wide array of proteins, lipids, RNA, and DNA. These EVs can be taken up by neighboring or distant cells, and influence a wide range of processes. Due to the complexity and relative inaccessibility of the CNS, our current understanding of the role of EVs is mainly derived in vitro work. However, recently new methods and techniques have opened the ability to study the role of EVs in the CNS in vivo. In this review, we discuss the current developments in our understanding of the role of EVs in the CNS in vivo.  相似文献   

10.
槐米中槲皮素的提取及其对中枢神经系统作用的研究进展   总被引:2,自引:0,他引:2  
介绍了槐米中槲皮素的几种常规提取方法,并概括了槲皮素作用于中枢神经系统方面的功效,包括其镇痛作用、抗抑郁作用及对记忆的影响.  相似文献   

11.
采用软硬酸碱理论,并结合离子半径和取代效应研究了铜系催化剂对甲醇氧化羰基化反应的影响。结果表明,交界碱Br-比软碱I-和硬碱Cl-更适宜与交界酸Cu2 和软酸Cu 配位,促进控制步骤CO对Cu-OCH3键插入的进行。在Cu(5-R-phen)Br2(R = 5-NH2、5-CH3、5-Cl、5-NO2;phen = 菲咯啉)中,弱给电子效应的甲基最有利于CO的活化和CO对Cu-OCH3键的插入反应,催化活性最高。同时在Cu(R?-phen)Br2 (R? = 2-CH3、4-CH3、5-CH3、2,9-dimethyl、4,7-dimethyl、5,6-dimethyl)中,含单甲基催化剂的活性比相应的含双甲基的高;邻近配位N原子的甲基空间位阻效应显著,且甲基越多,活性越低。以活性最高的Cu(5-CH3-phen)Br2为催化剂,在总压力4MPa,CO与氧气的分压比为19:1,反应时间4 h,反应温度130℃,催化剂浓度0.011mol/L的条件下的条件下,碳酸二甲酯的转化数和选择性分别为67.2和96.9%。  相似文献   

12.
13.
This work investigated the effect of thyroxine on the biogenesis and quality control system of rat liver mitochondria. Chronic administration of thyroxine to experimental animals induced hyperthyroidism, which was confirmed by a severalfold increase in serum-free triiodothyronine and thyroxine concentrations. The uptake of oxygen was found to increase with a decrease in ADP phosphorylation efficiency and respiratory state ratio. Electron microscopy showed 36% of liver mitochondria to be swollen and approximately 18% to have a lysed matrix with a reduced number of cristae. Frequently encountered multilamellar bodies associated with defective mitochondria were located either at the edge of or inside the organelle. The number, area and perimeter of hyperthyroid rat mitochondria increased. Administration of thyroxine increased mitochondrial biogenesis and the quantity of mitochondrial DNA in liver tissue. Mitochondrial dynamics and mitophagy changed significantly. The data obtained indicate that excess thyroid hormones cause a disturbance of the mitochondrial quality control system and ultimately to the incorporation of potentially toxic material in the mitochondrial pool.  相似文献   

14.
The treatment of memory impairments associated with the central nervous system diseases remains an unmet medical need with social and economic implications. Here we show, that a multi-target ligand of aminergic G protein-coupled receptors with antipsychotic activity in vivo (D2AAK1) stimulates neuron growth and survival and promotes neuron integrity. We focused on the multilevel evaluation of the D2AAK1-related effects on neurons in terms of behavioral, cellular, molecular, and biochemical features in vivo and in vitro, such as memory-related responses, locomotor activity, tissue sections analysis, metabolic activity, proliferation level, neurons morphology, and proteins level involved in intracellular signaling pathways. In silico studies indicate that activation of calcium/calmodulin-dependent protein kinase I (CaMKI) may underline some of the observed activities of the compound. Furthermore, the compound increases hippocampal neuron proliferation via the activation of neurotrophic factors and cooperating signals responsible for cell growth and proliferation. D2AAK1 improves memory and learning processes in mice after both acute and chronic administration. D2AAK1 also causes an increase in the number of hippocampal pyramidal neurons after chronic administration. Because of its neuroprotective properties and pro-cognitive activity in behavioral studies D2AAK1 has the potential for the treatment of memory disturbances in neurodegenerative and mental diseases.  相似文献   

15.
To investigate a possible central mechanism of action of Botulinum toxin A (BoNT/A) following injection in the bladder, complementary to the acknowledged peripheral bladder effect, we studied changes in the expression of neuropeptides and receptors involved in lower urinary tract function in the spinal cord (SC) and dorsal root ganglia (DRG) of normal rats following BoNT/A bladder injection. Thirty-six Sprague-Dawley rats, divided into three groups of n = 12, received bladder injections of 2U or 5U OnabotulinumtoxinA (BOTOX®), or saline. Six animals from each group were sacrificed on days 7 and 14. Expression of Tachykinin 1 (Tac1), capsaicin receptor (TRPV1), neuropeptide Y (NPY), proenkephalin (PENK) and muscarinic receptors M1, M2, M3, was evaluated in the bladder, L6-S1 DRG, and SC segments using real-time PCR and Western blotting. Real-time PCR revealed increased expression of NPY in all tissues except for SC, and increased TRPV1 and PENK expression in DRG and SC, whereas expression of Tac1, M1 and M2 was decreased. Less significant changes were noted in protein levels. These findings suggest that bladder injections of OnabotulinumtoxinA may be followed by changes in the expression of sensory, sympathetic and cholinergic bladder function regulators at the DRG/SC level.  相似文献   

16.
Pericytes at the blood–brain barrier (BBB) are located between the tight endothelial cell layer of the blood vessels and astrocytic endfeet. They contribute to central nervous system (CNS) homeostasis by regulating BBB development and maintenance. Loss of pericytes results in increased numbers of infiltrating immune cells in the CNS in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis (MS). However, little is known about their competence to modulate immune cell activation or function in CNS autoimmunity. To evaluate the capacity of pericytes to directly interact with T cells in an antigen-specific fashion and potentially (re)shape their function, we depleted major histocompatibility complex (MHC) class II from pericytes in a cell type-specific fashion and performed T cell-pericyte cocultures and EAE experiments. We found that pericytes present antigen in vitro to induce T cell activation and proliferation. In an adoptive transfer EAE experiment, pericyte-specific MHC II KO resulted in locally enhanced T cell infiltration in the CNS; even though, overall disease course of mice was not affected. Thus, pericytes may serve as non-professional antigen-presenting cells affecting states of T cell activation, thereby locally shaping lesion formation in CNS inflammation but without modulating disease severity.  相似文献   

17.
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.  相似文献   

18.
Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood–brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.  相似文献   

19.
20.
Collagens are the most abundant proteins in vertebrates and constitute the major components of the extracellular matrix. Collagens play an important and multifaceted role in the development and functioning of the nervous system and undergo structural remodeling and quantitative modifications during aging. Here, we investigated the age-dependent regulation of col4a1 and col25a1 in the brain of the short-lived vertebrate Nothobranchius furzeri, a powerful model organism for aging research due to its natural fast-aging process and further characterized typical hallmarks of brain aging in this species. We showed that col4a1 and col25a1 are relatively well conserved during vertebrate evolution, and their expression significantly increases in the brain of N. furzeri upon aging. Noteworthy, we report that both col4a1 and col25a1 are expressed in cells with a neuronal phenotype, unlike what has already been documented in mammalian brain, in which only col25a1 is considered a neuronal marker, whereas col4a1 seems to be expressed only in endothelial cells. Overall, our findings encourage further investigation on the role of col4a1 and col25a1 in the biology of the vertebrate brain as well as the onset of aging and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号