首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polo‐like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N‐terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP‐competitive compounds, which may suffer from low selectivity. In this study we discovered novel non‐ATP‐competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular‐docking‐based virtual screening. The activities of top‐ranking compounds were evaluated by in vitro enzyme assay with full‐length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3‐((2‐oxo‐2‐(thiophen‐2‐yl)ethyl)thio)‐6‐(pyridin‐3‐ylmethyl)‐1,2,4‐triazin‐5(4H)‐one (compound 4 ) with an IC50 value of 13.1±1.7 μm . Our work provides new insight into the design of kinase inhibitors that target non‐ATP binding sites.  相似文献   

2.
Metalloproteinases of the astacin family are drawing ever increasing attention as potential drug targets. However, knowledge regarding inhibitors thereof is limited in most cases. Crucial for the development of metalloprotease inhibitors is high selectivity, to avoid side effects brought about by inhibition of off‐target proteases and interference with physiological pathways. In this study we aimed at the design of novel selective inhibitors for the astacin proteinase meprin α. Based on a recently identified tertiary amine scaffold, a series of compounds was synthesized and evaluated. The compounds exhibit reasonable inhibitory activity with high selectivity over other metalloproteases. The isoenzyme meprin β is only slightly inhibited. Hence, the present study revealed a novel class of selective meprin α inhibitors with improved selectivity over known compounds.  相似文献   

3.
Polo‐like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N‐terminal kinase domain and C‐terminal polo‐box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (?)‐epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein‐labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose‐dependent inhibition of the PBD and preliminary structure–activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell‐cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.  相似文献   

4.
Cathepsin C is a papain‐like cysteine protease with dipeptidyl aminopeptidase activity that is thought to activate various granule‐associated serine proteases. Its exopeptidase activity is structurally explained by the so‐called exclusion domain, which blocks the active‐site cleft beyond the S2 site and, with its Asp 1 residue, provides an anchoring point for the N terminus of peptide and protein substrates. Here, the hydrazide of (2S,3S)‐trans‐epoxysuccinyl‐L ‐leucylamido‐3‐methylbutane (E‐64c) (k2/Ki=140±5 M ?1 s?1) is demonstrated to be a lead structure for the development of irreversible cathepsin C inhibitors. The distal amino group of the hydrazide moiety addresses the acidic Asp 1 residue at the entrance of the S2 pocket by hydrogen bonding while also occupying the flat hydrophobic S1′–S2′ area with its leucine‐isoamylamide moiety. Furthermore, structure–activity relationship studies revealed that functionalization of this distal amino group with alkyl residues can be used to occupy the conserved hydrophobic S2 pocket. In particular, the n‐butyl derivative was identified as the most potent inhibitor of the series (k2/Ki=56 000±1700 M ?1 s?1).  相似文献   

5.
3‐Deazaneplanocin A (DzNep) is a potential epigenetic drug for the treatment of various cancers. DzNep has been reported to deplete histone methylations, including oncogenic EZH2 complex, giving rise to epigenetic modifications that reactivate many silenced tumor suppressors in cancer cells. Despite its promise as an anticancer drug, little is known about the structure–activity relationships of DzNep in the context of epigenetic modifications and apoptosis induction. In this study, a number of analogues of DzNep were examined for DzNep‐like ability to induce synergistic apoptosis in cancer cells in combination with trichostatin A, a known histone deacetylase (HDAC) inhibitor. The structure–activity relationship data thus obtained provide valuable information on the structural requirements for biological activity. The studies identified three compounds that show similar activities to DzNep. Two of these compounds show good pharmacokinetics and safety profiles. Attempts to correlate the observed synergistic apoptotic activities with measured S‐adenosylhomocysteine hydrolase (SAHH) inhibitory activities suggest that the apoptotic activity of DzNep might not be directly due to its inhibition of SAHH.  相似文献   

6.
Infections caused by the hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The NS5B polymerase of HCV is responsible for the replication of viral RNA and has been a prime target in the search for novel treatment options. We had discovered allosteric finger‐loop inhibitors based on a thieno[3,2‐b]pyrrole scaffold as an alternative to the related indole inhibitors. Optimization of the thienopyrrole series led to several N‐acetamides with submicromolar potency in the cell‐based replicon assay, but they lacked oral bioavailability in rats. By linking the N4‐position to the ortho‐position of the C5‐aryl group, we were able to identify the tetracyclic thienopyrrole 40 , which displayed a favorable pharmacokinetic profile in rats and dogs and is equipotent with recently disclosed finger‐loop inhibitors based on an indole scaffold.  相似文献   

7.
4‐Anilinoquinolines were identified as potent and narrow‐spectrum inhibitors of the cyclin G associated kinase (GAK), an important regulator of viral and bacterial entry into host cells. Optimization of the 4‐anilino group and the 6,7‐quinoline substituents produced GAK inhibitors with nanomolar activity, over 50 000‐fold selectivity relative to other members of the numb‐associated kinase (NAK) subfamily, and a compound (6,7‐dimethoxy‐N‐(3,4,5‐trimethoxyphenyl)quinolin‐4‐amine; 49 ) with a narrow‐spectrum kinome profile. These compounds may be useful tools to explore the therapeutic potential of GAK in prevention of a broad range of infectious and systemic diseases.  相似文献   

8.
Nonstructural protein 5A (NS5A) represents a novel target for the treatment of hepatitis C virus (HCV). Daclatasvir, recently reported by Bristol–Myers–Squibb, is a potent NS5A inhibitor currently under investigation in phase 3 clinical trials. While the performance of daclatasvir has been impressive, the emergence of resistance could prove problematic and as such, improved analogues are being sought. By varying the biphenyl‐imidazole unit of daclatasvir, novel inhibitors of HCV NS5A were identified with an improved resistance profile against mutant strains of the virus while retaining the picomolar potency of daclatasvir. One compound in particular, methyl ((S)‐1‐((S)‐2‐(4‐(4‐(6‐(2‐((S)‐1‐((methoxycarbonyl)‐L ‐valyl)pyrrolidin‐2‐yl)‐1H‐imidazol‐5‐yl)quinoxalin‐2‐yl)phenyl)‐1H‐imidazol‐2‐yl)pyrrolidin‐1‐yl)‐3‐methyl‐1‐oxobutan‐2‐yl)carbamate ( 17 ), exhibited very promising activity and showed good absorption and a long predicted human pharmacokinetic half‐life. This compound represents a promising lead that warrants further evaluation.  相似文献   

9.
Three new oxazole‐bridged combretastatin A analogues with additional functional groups at the B‐ring [‐SMe, ‐OH, p‐quinone] were tested for antiproliferative activity and specificity on human HL‐60 leukemia, 518A2 melanoma, and colon carcinomas HCT‐116 (wt)/(p53?/?) and HT‐29 cells. While all oxazoles, except quinone 8 , were efficacious against HCT‐116 cells at submicromolar IC50 values (48 h incubation), only thioanisole 5 achieved this potency in combretastatin‐refractory HT‐29 cells by significant upregulation of p21cip1/waf1 associated with an S/G2 cell‐cycle arrest.  相似文献   

10.
Yi Wang  Prof. Shutao Ma 《ChemMedChem》2013,8(10):1589-1608
Bacterial infections are a constant and serious threat to human health. With the increase of multidrug resistance of clinically pathogenic bacteria, common antibiotic therapies have been less effective. Fatty acid synthesis type II (FASII) system enzymes are essential for bacterial membrane lipid biosynthesis and represent increasingly promising targets for the discovery of antibacterial agents with new mechanisms of action. This review highlights recent advances in inhibitors of bacterial FASII as potential antibacterial agents, paying special attention to the activities, mechanisms, and structure–activity relationships of those inhibitors that mainly target β‐ketoacyl‐ACP synthase, β‐ketoacyl‐ACP reductase, β‐hydroxyacyl‐ACP dehydratase, and enoyl‐ACP reductase. Although inhibitors with low nanomolar and selective activity against various bacterial FASII have entered clinical trials, further research is needed to expand upon both available and yet unknown scaffolds to identify new FASII inhibitors that may have antibacterial potential, particularly against resistant bacterial strains.  相似文献   

11.
Human DNA topoisomerase IIα (htIIα) is a validated target for the development of anticancer agents. Based on structural data regarding the binding mode of AMP‐PNP (5′‐adenylyl‐β,γ‐imidodiphosphate) to htIIα, we designed a two‐stage virtual screening campaign that combines structure‐based pharmacophores and molecular docking. In the first stage, we identified several monosubstituted 9H‐purine compounds and a novel class of 1H‐pyrazolo[3,4]pyrimidines as inhibitors of htIIα. In the second stage, disubstituted analogues with improved cellular activities were discovered. Compounds from both classes were shown to inhibit htIIα‐mediated DNA decatenation, and surface plasmon resonance (SPR) experiments confirmed binding of these two compounds on the htIIα ATPase domain. Proposed complexes and interaction patterns between both compounds and htIIα were further analyzed in molecular dynamics simulations. Two compounds identified in the second stage showed promising anticancer activities in hepatocellular carcinoma (HepG2) and breast cancer (MCF‐7) cell lines. The discovered compounds are suitable starting points for further hit‐to‐lead development in anticancer drug discovery.  相似文献   

12.
Indoleamine‐2,3 dioxygenase 1 (IDO1) has emerged as a central regulator of immune responses in both normal and disease biology. Due to its established role in promoting tumour immune escape, IDO1 has become an attractive target for cancer treatment. A novel series of highly cell potent IDO1 inhibitors based on a 4‐amino‐1,2,3‐triazole core have been identified. Comprehensive kinetic, biochemical and structural studies demonstrate that compounds from this series have a noncompetitive kinetic mechanism of action with respect to the tryptophan substrate. In co‐complex crystal structures, the compounds bind in the tryptophan pocket and make a direct ligand interaction with the haem iron of the porphyrin cofactor. It is proposed that these data can be rationalised by an ordered‐binding mechanism, in which the inhibitor binds an apo form of the enzyme that is not competent to bind tryptophan. These inhibitors also form a very tight, long‐lived complex with the enzyme, which partially explains their exquisite cellular potency. This novel series represents an attractive starting point for the future development of potent IDO1‐targeted drugs.  相似文献   

13.
A series of analogues of the adamantyl arotinoid (AdAr) chalcone MX781 with halogenated benzyloxy substituents at C2′ and heterocyclic derivatives replacing the chalcone group were found to inhibit IκBα kinase α (IKKα) and IκBα kinase β (IKKβ) activities. The growth inhibitory capacity of some analogues against Jurkat T cells as well as prostate carcinoma (PC‐3) and chronic myelogenous leukemia (K562) cells, which contain elevated basal IKK activity, correlates with the induction of apoptosis and increased inhibition of recombinant IKKα and IKKβ in vitro, pointing toward inhibition of IKK/NFκB signaling as the most likely target of the anticancer activities of these AdArs. While the chalcone functional group present in many dietary compounds has been shown to mediate interactions with IKKβ via Michael addition with cysteine residues, AdArs containing a five‐membered heterocyclic ring (isoxazoles and pyrazoles) in place of the chalcone of the parent system are potent inhibitors of IKKs as well, which suggests that other mechanisms for inhibition exist that do not depend on the presence of a reactive α,β‐unsaturated ketone.  相似文献   

14.
Despite the considerable interest in protein kinase C‐related kinase 1 (PRK1) as a target in cancer research, there is still a lack of PRK1 inhibitors with suitable selectivity profiles and physicochemical properties. To identify new PRK1 inhibitors we applied a virtual screening approach, which combines ensemble docking, minimization of the protein–ligand complex, binding free energy calculations, and application of quantitative structure–activity relationship (QSAR) models for predicting in vitro activity. The developed approach was then applied in a prospective manner to screen available libraries of kinase inhibitors from Selleck and GlaxoSmithKline (GSK). Compounds that showed favorable prediction were then tested in vitro for PRK1 inhibition. Some of the hits were found to inhibit PRK1 in the low‐nanomolar range. Three in vitro hits were additionally tested in a mass‐spectrometry‐based cellular kinase profiling assay to examine selectivity. Our findings show that nanomolar and drug‐like inhibitors can be identified by the virtual screening approach presented herein. The identified inhibitors are valuable tools for gaining a better understanding of PRK1 inhibition, and the identified hits can serve as starting points for further chemical optimization.  相似文献   

15.
Herein we report the first exploration of a dual‐targeting drug design strategy to improve the efficacy of small‐molecule cancer immunotherapy. New hybrids of indoleamine 2,3‐dioxygenase 1 (IDO1) inhibitors and DNA alkylating nitrogen mustards that respectively target IDO1 and DNA were rationally designed. As the first‐in‐class examples of such molecules, they were found to exhibit significantly enhanced anticancer activity in vitro and in vivo with low toxicity. This proof‐of‐concept study has established a critical step toward the development of a novel and effective immunotherapy for the treatment of cancers.  相似文献   

16.
Chloroquine (CQ) has been widely used in the treatment of malaria since the 1950s, though toxicity and resistance is increasingly limiting its use in the clinic. More recently, CQ is also becoming recognized as an important therapeutic compound for the treatment of autoimmune disorders and has shown activity as an anticancer agent. However, the full extent of CQ pharmacology in humans is still unclear. Herein, we demonstrate that the lysosomal protein saposin B (sapB), critical for select lipid degradation, binds CQ with implications for both CQ function and toxicity. Using isothermal titration calorimetry (ITC) and fluorescence quenching experiments, CQ was shown to bind to the dimeric form of sapB at both pH 5.5 and pH 7.4 with an average binding affinity of 2.3×104 m ?1. X‐ray crystallography confirmed this, and the first complete crystal structure of sapB with a bound small molecule (CQ) is reported. The results suggest that sapB might play a role in mitigating CQ‐based toxicity and that sapB might itself be overwhelmed by CQ causing impaired lipid degradation.  相似文献   

17.
18.
Background and aims: To investigate the impact of plasma apoA‐II concentrations on the alteration of HDL subclass distribution, and the cooperative effect of apoA‐I and apoA‐II on it. Methods and results: The apoA‐I contents of plasma HDL subclasses were quantified by two‐dimensional gel electrophoresis associated with immunodetection for 292 Chinese people. These subjects were divided according to the mean ± 1 SD of apoA‐II and apoA‐I levels as two cut‐points, respectively. Compared with the low‐apoA‐II group, the apoA‐I contents of HDL3a (in the high group), HDL3b, and HDL2b increased strikingly, both in the middle‐ and high‐apoA‐II group. The apoA‐I contents of all HDL subclasses increased progressively when the apoA‐I and apoA‐II levels simultaneously or the apoA‐I/apoA‐II ratio increased, and in comparison to the low‐apoA‐I–A‐II levels group, the apoA‐I contents of HDL2b (115%) increased more significantly than those of preβ1‐HDL (39%) in the high‐apoA‐I–A‐II levels group. Multiple analyses also indicated that the three HDL subclasses, HDL3a, HDL3b and HDL2b, were independently predicted by apoA‐II. Conclusion: Excess apoA‐II can cause the accumulation of both large‐sized HDL2b and small‐sized HDL3, which implies that apoA‐II plays a double role in the HDL maturation metabolism. Meanwhile, the degree of HDL2b increased significantly relative to that of preβ1‐HDL when apoA‐I and apoA‐II levels were elevated simultaneously, suggesting that the maturation and metabolism of HDL might be promoted and reverse cholesterol transport might be enhanced.  相似文献   

19.
In ongoing studies towards novel hepatitis C virus (HCV) therapeutics, inhibitors of nonstructural protein 5A (NS5A) were evaluated. Specifically, starting from previously reported lead compounds, peripheral substitution patterns of a series of biaryl‐linked pyrrolidine NS5A replication complex inhibitors were probed and structure–activity relationships were elucidated. Using molecular modelling and a supercritical fluid chromatographic (SFC) technique, intramolecular H‐bonding and peripheral functional group topology were evaluated as key determinants of activity and membrane permeability. The novel compounds exhibited retained potency as compared with the lead compounds, and also showed promising results against a panel of resistance viruses. Together, the results of the study take us a step closer towards understanding the potency of daclatasvir, a clinical candidate upon which the compounds were based, and to designing improved analogues as second‐generation antiviral agents targeting NS5A.  相似文献   

20.
Inhibition of the biosynthesis of complex N‐glycans in the Golgi apparatus influences progress of tumor growth and metastasis. Golgi α‐mannosidase II (GMII) has become a therapeutic target for drugs with anticancer activities. One critical task for successful application of GMII drugs in medical treatments is to decrease their unwanted co‐inhibition of lysosomal α‐mannosidase (LMan), a weakness of all known potent GMII inhibitors. A series of novel N‐substituted polyhydroxypyrrolidines was synthesized and tested with modeled GH38 α‐mannosidases from Drosophila melanogaster (GMIIb and LManII). The most potent structures inhibited GMIIb (Ki=50–76 μm , as determined by enzyme assays) with a significant selectivity index of IC50(LManII)/IC50(GMIIb) >100. These compounds also showed inhibitory activities in in vitro assays with cancer cell lines (leukemia, IC50=92–200 μm ) and low cytotoxic activities in normal fibroblast cell lines (IC50>200 μm ). In addition, they did not show any significant inhibitory activity toward GH47 Aspergillus saitoiα1,2‐mannosidase. An appropriate stereo configuration of hydroxymethyl and benzyl functional groups on the pyrrolidine ring of the inhibitor may lead to an inhibitor with the required selectivity for the active site of a target α‐mannosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号