首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthetic details for the construction of three new dipyridotetraazapentalene derivatives, 5H‐pyrido[3″,4″:4′,5′] [1,2,3]triazolo‐ [1′,2′:1,2][1,2,3]triazolo[5,4‐b]pyridin‐6‐ium inner salt ( 8 ), 5H‐pyrido[3″,2″:4′,5′] [1,2,3]triazolo[1′,2′:1,2] [1,2,3]triazolo[5,4‐b]‐pyridin‐6‐ium inner salt ( 15 ) and 5H‐pyrido[2″,3″:4′,5′] [1,2,3]‐triazolo[1′,2′:1,2][1,2,3]triazolo[4,5‐b]pyridin‐6‐ium inner salt ( 16 ) are presented. Nitration of ( 8 ) and ( 15 ) afforded the novel tetranitrodipyridotetraazapentalene derivatives, 2,4,8,10‐tetranitro‐5H‐pyrido[3″,4″:4′,5′][1,2,3]triazolo[1′,2′:1,2][1,2,3]‐triazolo[5,4‐b]‐pyridin‐6‐ium inner salt ( 3 ) and 2,4,8,10‐tetranitro‐5H‐pyrido[3″,2″:4′,5′][1,2,3]triazolo[1′,2′:1,2][1,2,3]‐triazolo[5,4‐b]‐pyridin‐6‐ium inner salt ( 4 ) in good yields. Both isomers, ( 3 ) and ( 4 ), exhibited high thermal stability (differential scanning calorimetric analysis and thermal gravimetric analysis) and were insensitive to impact (hammer/anvil test).  相似文献   

2.
The course of the four-component reactions of (2-benzimidazolyl) acetonitrile, carbondisulfide, isothiocyanate, and sulfur and selenium, respectively, is quite different. Whereas in the case of sulfur a tetracyclic [1,3]thiazolo[4′,5′:4,5]pyrimido[1,6-a]benzimidazol-2(3H)-thione is formed, a zwitterionic 7-(benzimidazolium-2-yl)-[1,2]thiaselenolo[2,3-b][1,2,4]thiaselenazole-6-thiolate (an azaselenadithiapentalene) is the product in the case of selenium. The structures of the products have been established by X-ray crystallography, and reaction mechanisms for their formation are proposed.  相似文献   

3.
Histone deacetylases (HDACs) are important enzymes in epigenetic regulation and are therapeutic targets for cancer. Most zinc‐dependent HDACs induce proliferation, dedifferentiation, and anti‐apoptotic effects in cancer cells. We designed and synthesized a new series of pyridone‐based HDAC inhibitors that have a pyridone ring in the core structure and a conjugated system with an olefin connecting the hydroxamic acid moiety. Consequently, most of the selected pyridone‐based HDAC inhibitors showed similar or higher inhibition profiles in addition to remarkable metabolic stability against hydrolysis relative to the corresponding lactam‐based HDAC inhibitors. Furthermore, the selectivity of the novel pyridine‐based compounds was evaluated across all of the HDAC isoforms. One of these compounds, (E)‐N‐hydroxy‐3‐{1‐[3‐(naphthalen‐2‐yl)propyl]‐2‐oxo‐1,2‐dihydropyridin‐3‐yl}acrylamide, exhibited the highest level of HDAC inhibition (IC50=0.07 μM ), highly selective inhibition of class I HDAC1 and class II HDAC6 enzymes, metabolic stability in mouse liver microsomal studies, and effective growth inhibition of various cancer cell lines. Docking studies indicated that a long alkyl linker and bulky hydrophobic cap groups affect in vitro activities. Overall, the findings reported herein regarding pyridone‐based HDAC inhibitors can be used to guide future research efforts to develop new and effective anticancer therapeutics.  相似文献   

4.
We prepared a series of free NH and N-substituted dibenzonthiazines with potential anti-tumor activity from N-aryl-benzenesulfonamides. A biological test of synthesized compounds (59 samples) was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. We identified 6-(phenylsulfonyl)-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide and 6-tosyl-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide as the best compounds with promising values of activity (overall range of 2–5.4 μM). Herein, we report the dibenzothiazine core as a novel building block with antiproliferative activity, targeting tubulin dynamics.  相似文献   

5.
Pharmacological inhibition of histone deacetylase 6 (HDAC6) is an effective therapeutic strategy for cancer and immunological diseases. Most of the previously reported HDAC6 inhibitors have a hydroxamate group as a zinc binding group (ZBG), which coordinates to the catalytic zinc ion of HDAC6. The hydroxamate group is liable to metabolically generate mutagenetic hydroxylamine; therefore, non-hydroxamate HDAC6 inhibitors would be advantageous. In this study, to identify novel non-hydroxamate HDAC6-selective inhibitors, screening of a chemical library and the subsequent structural optimization were performed, which led to the identification of HDAC6-selective inhibitors with 3,3,3-trifluorolactic amide (TFLAM) as a novel ZBG. The identified inhibitor showed potent and selective HDAC6-inhibitory activity in cells and induced regulatory T (Treg) cell differentiation.  相似文献   

6.
An efficient approach for the synthesis of highly substituted pyrrolo[3,4‐d][1,2]oxazepines has been achieved by gold(I)‐catalyzed 1,3‐dipolar cycloaddition reactions of 1‐(1‐alkynyl)cyclopropyl oximes with nitrones in good to excellent yields as a single diastereomer. A complete chirality transfer was observed in this transformation.  相似文献   

7.
A series of 1‐arylsulfonyl‐5‐(N‐hydroxyacrylamide)indolines ( 7 – 15 ) has been developed; the compounds exhibited potent histone deacetylase (HDAC) inhibitory activities. Notably, almost all of this series exhibited better HDAC‐inhibitory and antiproliferative activities than 3‐(1‐benzenesulfonyl‐1H‐indol‐5‐yl)‐N‐hydroxyacrylamide ( 6 ), as reported in a previous study. Among these compounds, 3‐[1‐(4‐methoxybenzenesulfonyl)‐2,3‐dihydro‐1H‐indol‐5‐yl]‐N‐hydroxyacrylamide ( 9 ) showed a two‐ to tenfold increase in activity compared to SAHA ( 1 ) in the suppression of lipopolysaccharide‐induced cytokine production. Compound 9 also caused a marked reduction in carrageenan‐induced acute inflammation in a rat model. Taken together, these data indicated that 1‐arylsulfonyl‐5‐(N‐hydroxyacrylamide)indolines HDAC inhibitors exhibit potent anti‐inflammatory activity.  相似文献   

8.
8-Nitro-4H-benzo[e][1,3]thiazinones (BTZs) are potent in vitro antimycobacterial agents. New chemical transformations, viz. dearomatization and decarbonylation, of two BTZs and their influence on the compounds’ antimycobacterial properties are described. Reactions of 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one and the clinical drug candidate BTZ043 with the Grignard reagent CH3MgBr afford the corresponding dearomatized stable 4,5-dimethyl-5H- and 4,7-dimethyl-7H-benzo[e][1,3]thiazines. These methine compounds are structurally characterized by X-ray crystallography for the first time. Reduction of the BTZ carbonyl group, leading to the corresponding markedly non-planar 4H-benzo[e][1,3]thiazine systems, is achieved using the reducing agent (CH3)2S ⋅ BH3. Double methylation with dearomatization and decarbonylation renders the two BTZs studied inactive against Mycobacterium tuberculosis and Mycobacterium smegmatis, as proven by in vitro growth inhibition assays.  相似文献   

9.
The benzoxazine scaffolds are of much interest as they are found in a large array of natural products and pharmaceutical drugs with diverse activities. We have developed a palladium‐catalyzed decarboxylative selective mono‐ and bis‐acylation of 4H‐benzo[d][1,3]oxazin‐4‐one derivatives with α‐oxo carboxylic acids via preferential cyclic imine‐N‐directed C−H activation. 2‐Aryl‐4H‐benzo[d][1,3]oxazin‐4‐one was acylated with a variety of substituted phenylglyoxylic acids to produce the corresponding products. It was observed that electron‐donating groups (CH3, OCH3) at any position of the aromatic ring of phenylglyoxylic acid provided good to excellent yields, whereas phenylglyoxylic acids containing electron‐withdrawing groups (COCH3, CN, NO2) gave the products in moderate yields. Interestingly when the reaction was performed with silver triflate (AgOTf) in place of silver nitrate (AgNO3) in the presence of 4 equivalents of glyoxylic acid, the bis‐acylated product was obtained together with a small amount of mono‐acylated product. This is the first report of acylation of 2‐aryl‐4H‐benzo[d][1,3]oxazin‐4‐ones via C−H activation. The notable features of this reaction are acylation with more challenging heteroarene‐oxo carboxylic acids and alkyl oxo carboxylic acids. This new protocol provides an easy and efficient access to a variety of o‐acyl‐4H‐benzo[d][1,3]oxazin‐4‐one derivatives which are of pharmaceutical importance.

  相似文献   


10.
The use of selenium‐containing heterocyclic compounds as potent cancer chemopreventive and chemotherapeutic agents has been well documented by a large number of clinical studies. In this study we developed a new approach to synthesize four benzimidazole‐containing selenadiazole derivatives (BSeDs). The method uses a combination of peptide coupling reagents and microwave irradiation. This strategy features milder reaction conditions, higher yields, and shorter reaction times. The synthetic BSeDs were identified as potent antiproliferative agents against the human MCF‐7 and MDA‐MB‐231 breast cancer cell lines. Compounds 1 b (5‐(6‐methyl‐1H‐benzo[d]imidazol‐2‐yl)benzo[c][1,2,5]selenadiazole), 1 c (5‐(6‐chloro‐1H‐benzo[d]imidazol‐2‐yl)benzo[c][1,2,5]selenadiazole), and 1 d (5‐(6‐bromo‐1H‐benzo[d]imidazol‐2‐yl)benzo[c][1,2,5]selenadiazole) were found to show greater cytotoxicity against the triple‐negative breast cancer cell line MDA‐MB‐231 than MCF‐7, and to exhibit dose‐dependent inhibition of cell migration, in which a significant decrease in the zone of cell monolayer wound closure was observed relative to untreated controls. Our results demonstrate that BSeDs can cause cell‐cycle arrest and apoptosis in MDA‐MB‐231 cells by inducing DNA damage, inhibiting protein kinase B (AKT), and activating mitogen‐activated protein kinase (MAPK) family members through the overproduction of reactive oxygen species (ROS). Taken together, the results of this study provide a facile microwave‐assisted strategy for the synthesis of selenium‐containing organic compounds that exhibit a high level of anticancer efficacy.  相似文献   

11.
2‐Azetidinones, commonly known as β‐lactams, are well‐known heterocyclic compounds. Herein we described the synthesis and biological evaluation of a series of novel β‐lactams. In vitro inhibition assays against HDAC isoforms showed an interesting isoform‐selectivity of these compounds towards HDAC6 and HDAC8. The isoform selectivity changed in response to modification of the azetidinone‐ring nitrogen atom substituent. The presence of an N‐thiomethyl group is a prerequisite for the activity of these compounds in the micromolar range towards HDAC8.  相似文献   

12.
A novel and highly effective flame retardant (FR), DOPO‐TPMP oligomer, was synthesized by a simple condensation of 4‐(hydroxymethyl)‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane‐1‐oxide and phosphorus oxychloride followed by a polycondensation reaction with 6‐(2,5‐dihydroxyphenyl)‐6H‐dibenzo[c,e][1,2]oxaphosphinine‐6‐oxide. The chemical structure of DOPO‐TPMP was well characterized using Fourier transform infrared and NMR spectra. DOPO‐TPMP was used as an additive‐type FR for epoxy resin (EP). The FR properties of the resultant EP composites were investigated by limiting oxygen index (LOI) test, UL‐94 vertical burning test and cone calorimeter measurements. Specifically, the EP composite containing 10.0% DOPO‐TPMP achieved a LOI value of 36.1%, V‐0 rating in the UL‐94 test and a 58% reduction in peak heat release rate. Further mechanism analysis attributed the enhanced flame retardancy to the increased char yield on the addition of DOPO‐TPMP. © 2019 Society of Chemical Industry  相似文献   

13.
New vinyl ester systems are prepared using allyl‐functional benzoxazine monomers, 3‐allyl‐6‐methyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazine (pC‐ala) or bis(3‐allyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazin‐6‐yl)methane (BF‐ala), as reactive diluents for vinyl ester resins derived from an epoxy resin, diglycidyl ether of bisphenol A, instead of using styrene. Different initiators are used to investigate the copolymerization of allyl function from pC‐ala with vinyl function from vinyl ester resin prepolymer. The temperature dependence of viscosity is studied to demonstrate the retention of processability of the new vinyl ester resins. Dynamic mechanical and thermogravimetric analyses are used to investigate the dynamic mechanical properties and thermal stability of the new resins. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
Galectin‐8 is a β‐galactoside‐recognising protein that has a role in the regulation of bone remodelling and is an emerging new target for tackling diseases with associated bone loss. We have designed and synthesised methyl 3‐O‐[1‐carboxyethyl]‐β‐d ‐galactopyranoside (compound 6 ) as a ligand to target the N‐terminal domain of galectin‐8 (galectin‐8N). Our design involved molecular dynamics (MD) simulations that predicted 6 to mimic the interactions made by the galactose ring as well as the carboxylic acid group of 3′‐O‐sialylated lactose (3′‐SiaLac), with galectin‐8N. Isothermal titration calorimetry (ITC) determined that the binding affinity of galectin‐8N for 6 was 32.8 μm , whereas no significant affinity was detected for the C‐terminal domain of galectin‐8 (galectin‐8C). The crystal structure of the galectin‐8N– 6 complex validated the predicted binding conformation and revealed the exact protein–ligand interactions that involve evolutionarily conserved amino acids of galectin and also those unique to galectin‐8N for recognition. Overall, we have initiated and demonstrated a rational ligand design campaign to develop a monosaccharide‐based scaffold as a binder of galectin‐8.  相似文献   

15.
High‐throughput screening highlighted 9‐oxo‐9H‐indeno[1,2‐b]pyrazine‐2,3‐dicarbonitrile ( 1 ) as an active inhibitor of ubiquitin‐specific proteases (USPs), a family of hydrolytic enzymes involved in the removal of ubiquitin from protein substrates. The chemical behavior of compound 1 was examined. Moreover, the synthesis and in vitro evaluation of new compounds, analogues of 1 , led to the identification of potent and selective inhibitors of the deubiquitinating enzyme USP8.  相似文献   

16.
A novel series of hybrids was designed and synthesized by combining key elements from farnesylthiosalicylic acid (FTS) and hydroxamic acid. Several 3,7,11‐trimethyldodeca‐2,6,10‐trien‐1‐yl) thio)benzamide derivatives, particularly those with branched and linear aliphatic linkers between the hydroxamic zinc binding group (ZBG) and the benzamide core, not only displayed significant antitumor activities against six human cancer cells but also exhibited histone deacetylase (HDAC) inhibitory effects in vitro. Among them, N‐(4‐(hydroxyamino)‐4‐oxobutyl)‐2‐(((2E,6E)‐3,7,11‐trimethyldodeca‐2,6, 10‐trien‐1‐yl)thio)benzamide ( 8 d ) was the most potent, with IC50 values of 4.9–7.6 μM ; these activities are eight‐ to sixteen‐fold more potent than FTS and comparable to that of suberoylanilide hydroxamic acid (SAHA). Derivative 8 d induced cell cycle arrest in the G0/G1 phase, inhibited the acetylation of histone H3 and α‐tubulin, and blocked Ras‐related signaling pathways in a dose‐dependent manner. The improved tumor growth inhibition and cell‐cycle arrest in vitro might result from the dual inhibition. These findings suggest dual inhibitors of Ras‐related signaling pathway and HDAC hold promise as therapeutic agents for the treatment of cancer.  相似文献   

17.
A new set of cyclooxygenase (COX) inhibitors endowed with an additional functionality was explored. These new compounds also contained either rhodamine 6G or 6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinoline, two moieties typical of efflux pump substrates and inhibitors, respectively. Among all the synthesized compounds, two new COX inhibitors with opposite selectivity were discovered: compound 8 [N‐(9‐{2‐[(4‐{2‐[3‐(5‐chlorofuran‐2‐yl)‐4‐phenylisoxazol‐5‐yl]acetamido}butyl)carbamoyl]phenyl‐6‐(ethylamino)‐2,7‐dimethyl‐3H‐xanthen‐3‐ylidene}ethanaminium chloride] was found to be a selective COX‐1 inhibitor, whereas 17 (2‐[3,4‐bis(4‐methoxyphenyl)isoxazol‐5‐yl]‐1‐[6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2‐(1H)‐yl]ethanone) was found to be a sub‐micromolar selective COX‐2 inhibitor. However, both were shown to interact with P‐glycoprotein. Docking experiments helped to clarify the molecular aspects of the observed COX selectivity.  相似文献   

18.
Histone deacetylase (HDAC) inhibitors are regarded as promising therapeutics for the treatment of cancer. All reported HDAC inhibitors contain three pharmacophoric features: a zinc‐chelating group, a hydrophobic linker, and a hydrophobic cap for surface recognition. In this study we investigated the effectiveness of osthole, a hydrophobic Chinese herbal compound, as the surface recognition cap in hydroxamate‐based compounds as inhibitors of HDAC. Nine novel osthole‐based N‐hydroxycinnamides were synthesized and screened for enzyme inhibition activity. Compounds 9 d , 9 e , 9 g exhibited inhibitory activities (IC50=24.5, 20.0, 19.6 nM ) against nuclear HDACs in HeLa cells comparable to that of suberoylanilide hydroxamic acid (SAHA; IC50=24.5 nM ), a potent inhibitor clinically used for the treatment of cutaneous T‐cell lymphoma (CTCL). While compounds 9 d and 9 e showed SAHA‐like activity towards HDAC1 and HDAC6, compound 9 g was more selective for HDAC1. Compound 9 d exhibited the best cellular effect, which was comparable to that of SAHA, of enhancing acetylation of either α‐tubulin or histone H3. Molecular docking analysis showed that the osthole moiety of compound 9 d may interact with the same hydrophobic surface pocket exploited by SAHA and it may be modified to provide class‐specific selectivity. These results suggest that osthole is an effective hydrophobic cap when incorporated into N‐hydroxycinnamide‐derived HDAC inhibitors.  相似文献   

19.
Six new fluorescent derivatives of 1,8‐naphthalimide were synthesized. Three were dyes, and three were fluorescent whitening agents (FWAs) containing a tetramethylpiperidine (TMP) stabilizer fragment. The FWAs were obtained under phase‐transfer catalysis conditions. Five of the compounds were copolymerized with methyl methacrylate, so copolymers with an intense color and/or fluorescence stable against solvents were obtained. The chemical bonding of the synthesized monomers in the polymers was confirmed spectrophotometrically. The participation of the monomer compounds did not significantly affect the process of copolymerization or the molecular masses of the obtained copolymers. The quantity of chemically bonded naphthalimide monomer in the copolymers was determined to be over 60%. The spectral properties of the compounds and their photostability in solution and in the copolymers were studied. The influence of the compounds on the photostability of the copolymers was determined. The compounds, especially those containing a stabilizer (TMP) fragment in their molecules, showed a positive stabilizing effect on the photodegradation of poly(methyl methacrylate). Polyamide fabrics with 2‐allyl‐6‐hydrazino‐benzo[de]isoquinoline‐1,3‐dione, 2‐allyl‐6‐(2‐amino‐ethylamino)‐benzo[de]isoquinoline‐1,3‐dione, and 2‐chloro‐N′‐(2‐methyl)‐1,3‐dioxo‐2,3‐dihydro‐1H‐benzo[de] isoquinoline‐6‐yl) acetohydrazide were dyed, and materials with an intense yellow color and fluorescence were obtained. Cotton fabrics were whitened with 2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐6‐methoxy‐benzo[de]isoquinoline‐1,3‐dione, 2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐6‐allyloxybenzo[de]isoquinoline‐1, 3‐dione, and 2‐[2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐1,3‐dioxo‐2,3‐dihidro‐1H benzo [de]isoquinoline‐6‐oxy]ethyl‐2‐methacrylate, and materials with bright whiteness and intense bluish fluorescence were obtained. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A novel series of sulfur-containing dihydrochromeno[8,7-e][1,3]oxazine-2(8H)-thiones has been synthesized through an eco-friendly Mannich-type condensation cyclization reaction of 7-hydroxy-4-methyl-2-thiocoumarin or 6-chloro-7-hydroxy-4-methyl-2-thiocoumarin with formaldehyde and primary amines in water at 80–90°C for 2 h. All the synthesized compounds were screened for their in vitro anti-bacterial efficacy against two Gram-positive and three Gram-negative bacterial strains by using the disc diffusion method. The compound (8c) was found to be most potent with the zone of inhibition of 16 and 15 mm against Staphylococcus aureus ATCC 2937 and Klebsiella pneumoniae ATCC 31488, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号