首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imaging agents that target adenosine type 2A (A2A) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson′s disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A‐specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [123I]MNI‐420 and [18F]MNI‐444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3‐e]‐1,2,4‐triazolo[1,5‐c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine‐18 or iodine‐123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7‐(2‐(4‐(4‐(2‐[18F]fluoroethoxy)phenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐pyrazolo[4,3‐e][1,2,4]triazolo[1,5‐c]pyrimidin‐5‐amine ([18F]MNI‐444) and 7‐(2‐(4‐(2‐fluoro‐4‐[123I]iodophenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐imidazo[1,2‐c]pyrazolo[4,3‐e]pyrimidin‐5‐amine ([123I]MNI‐420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.  相似文献   

2.
8‐Benzyl‐substituted tetrahydropyrazino[2,1‐f]purinediones were designed as tricyclic xanthine derivatives containing a basic nitrogen atom in the tetrahydropyrazine ring to improve water solubility. A library of 69 derivatives was prepared and evaluated in radioligand binding studies at adenosine receptor (AR) subtypes and for their ability to inhibit monoamine oxidases (MAO). Potent dual‐target‐directed A1/A2A adenosine receptor antagonists were identified. Several compounds showed triple‐target inhibition; one of the best compounds was 8‐(2,4‐dichloro‐5‐fluorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione ( 72 ) (human AR: Ki A1 217 nM , A2A 233 nM ; IC50 MAO‐B: 508 nM ). Dichlorinated compound 36 [8‐(3,4‐dichlorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione] was found to be the best triple‐target drug in rat (Ki A1 351 nM , A2A 322 nm; IC50 MAO‐B: 260 nM ), and may serve as a useful tool for preclinical proof‐of‐principle studies. Compounds that act at multiple targets relevant for symptomatic as well as disease‐modifying treatment of neurodegenerative diseases are expected to show advantages over single‐target therapeutics.  相似文献   

3.
In a search for novel agrochemicals with high activity and low toxicity, a series of diheterocyclic compounds containing 1,2,4‐triazolo[1,5‐a]pyrimidine and 1,3,4‐oxadiazole rings were designed and synthesized by a four‐step synthetic route starting from 2‐mercapto‐5,7‐dimethyl‐1,2,4‐triazolo[1,5‐a]pyrimidine. The structures of all the compounds synthesized were confirmed by 1H NMR, mass spectroscopy and elemental analysis. The preliminary bioassay against Brassica campestris L and Echinochloa crusgalli Beavu indicated that the title compounds displayed herbicidal activity at the concentration of 100 ppm and that compounds 5a (R = CH3), 5d (R = C2H5) and 5f (R = i‐Bu) were found to have particularly high activities. In addition, the results of an in vivo test at a concentration of 50 ppm showed that all the compounds prepared were highly active against Rhizoctonia slain, but not active against Fusarium oxysporum, Gibberella zeave and Phoma sparagi. A further in vivo test showed that compound 5j possessed better fungicidal activity against Rhizoctonia solani at a concentration of 200 ppm than Carbendazim and Validamycin A, which are well known for their fungicidal activity against Rhizoctonia solani. To our knowledge, this is the first report that 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives display fungicidal activity against Rhizoctonia solani. © 2001 Society of Chemical Industry  相似文献   

4.
A direct method for the arylation of 1,2‐azolo[1,5‐a]pyridines has been developed. In the process, the fused pyridines react with aryl halides in the presence of the palladium complex Pd(OAc)2(Phen) as a catalyst and copper(I) chloride (CuCl) as a Lewis acid to form arylated derivatives. While pyrazolo[1,5‐a]pyridines and [1,2,4]triazolo[1,5‐a]pyridines are arylated at ortho‐positions of their pyridine rings using this method, in situ ring‐opening of the formed C‐7 arylated [1,5‐a]pyridine takes place to generate the 2,6‐disubstituted pyridine. Also, upon treatment with lithium diisopropylamide (LDA), C‐7 arylated pyrazolo[1,5‐a]pyridine‐3‐carboxylates react to produce diversely substituted 2,6‐disubstituted pyridines. Finally, a sequential C‐3 arylation was accomplished through a two‐step sequence involving hydrolysis of pyrazolo[1,5‐a]pyridine‐3‐carboxylates followed by the bimetallic Pd/Cu‐catalyzed decarboxylative coupling reaction with aryl bromide.

  相似文献   


5.
Reaction of benzenediazonium chloride with active [1,2,4]triazin‐3‐ylthio‐methylene compounds 3 afforded the azo coupling products 5 , which yielded [1,2,4]triazolo[4,3‐b][1,2,4]triazin‐7(1H)‐ones 8 upon treatment with sodium ethoxide in ethanol. The latter products 8 were characterized on the basis of alternate synthesis and spectral data. The mechanism of formation of 8 and the regiochemistry of the studied reactions are discussed.  相似文献   

6.
Novel tricyclic 4‐(trifluoromethyl)‐[1,2,3]triazolo[1,5‐a]quinoxalines were readily prepared from N‐(o‐haloaryl)alkynylimines and sodium azide via copper(I)‐catalyzed tandem reactions. This synthetic strategy provides an efficient way to access a library of novel heterocyclic compounds that are of interest in drug discovery.  相似文献   

7.
An efficient palladium‐catalyzed synthesis of 3‐arylpyrazolo[1,5‐a]pyrimidines has been investigated. The key step in the synthesis is a Suzuki biaryl coupling of 3‐bromo‐2,5‐dimethyl‐7‐aminopyrazolo[1,5‐a]pyrimidines with arylboronic acids to provide 3‐arylpyrazolo[1,5‐a]pyrimidines in moderate to good yield. The synthetic utility of this methodology has been demonstrated by a concise and convergent synthesis of R121920, a potent CRHR1 antagonist recently undergoing clinical evaluations.  相似文献   

8.
Inhibition of adenosine A2A receptors has been shown to elicit a therapeutic response in preclinical animal models of Parkinson’s disease (PD). We previously identified the triazolo‐9H‐purine, ST1535, as a potent A2AR antagonist. Studies revealed that ST1535 is extensively hydroxylated at the ω‐1 position of the butyl side chain. Here, we describe the synthesis and evaluation of derivatives in which the ω‐1 position has been substituted (F, Me, OH) in order to block metabolism. The stability of the compounds was evaluated in human liver microsomes (HLM), and the affinity for A2AR was determined. Two compounds, (2‐(3,3‐dimethylbutyl)‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐6‐amine ( 3 b ) and 4‐(6‐amino‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐2‐yl)‐2‐methylbutan‐2‐ol ( 3 c ), exhibited good affinity against A2AR (Ki=0.4 nM and 2 nM , respectively) and high in vitro metabolic stability (89.5 % and 95.3 % recovery, respectively, after incubation with HLM for two hours).  相似文献   

9.
Reactions of hydrazonoyl halides 6 with either 4‐amino‐2,3‐dihydro‐6‐substituted‐3‐thioxo‐[1,2,4]‐triazin‐5(4H)ones 1 ( 2 ) or 4‐amino‐3‐methylthio‐6‐substituted‐[1,2,4]‐triazin‐5(4H)ones 3 ( 4 ) gave [1,2,4]‐triazino‐[4,3‐b][1,2,4,5]tetrazine derivatives 9 ( 10 ), respectively. The mechanism of the reactions studied is discussed.  相似文献   

10.
Given their high neuroprotective potential, ligands that block GluN2B‐containing N‐methyl‐D ‐aspartate (NMDA) receptors by interacting with the ifenprodil binding site located on the GluN2B subunit are of great interest for the treatment of various neuronal disorders. In this study, a novel class of GluN2B‐selective NMDA receptor antagonists with the benzo[7]annulene scaffold was prepared and pharmacologically evaluated. The key intermediate, N‐(2‐methoxy‐5‐oxo‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐yl)acetamide ( 11 ), was obtained by cyclization of 3‐acetamido‐5‐(3‐methoxyphenyl)pentanoic acid ( 10 b ). The final reaction steps comprise hydrolysis of the amide, reduction of the ketone, and reductive alkylation, leading to cis‐ and trans‐configured 7‐(ω‐phenylalkylamino)benzo[7]annulen‐5‐ols. High GluN2B affinity was observed with cis‐configured γ‐amino alcohols substituted with a 3‐phenylpropyl moiety at the amino group. Removal of the benzylic hydroxy moiety led to the most potent GluN2B antagonists of this series: 2‐methoxy‐N‐(3‐phenylpropyl)‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐amine ( 20 a , Ki=10 nM ) and 2‐methoxy‐N‐methyl‐N‐(3‐phenylpropyl)‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐amine ( 23 a , Ki=7.9 nM ). The selectivity over related receptors (phencyclidine binding site of the NMDA receptor, σ1 and σ2 receptors) was recorded. In a functional assay measuring the cytoprotective activity of the benzo[7]annulenamines, all tested compounds showed potent NMDA receptor antagonistic activity. Cytotoxicity induced via GluN2A subunit‐containing NMDA receptors was not inhibited by the new ligands.  相似文献   

11.
Animal models suggest that the chemokine ligand 2/CC‐chemokine receptor 2 (CCL2/CCR2) axis plays an important role in the development of inflammatory diseases. However, CCR2 antagonists have failed in clinical trials because of a lack of efficacy. We previously described a new approach for the design of CCR2 antagonists by the use of structure–kinetics relationships (SKRs). Herein we report new findings on the structure–affinity relationships (SARs) and SKRs of the reference compound MK‐0483, its diastereomers, and its structural analogues as CCR2 antagonists. The SARs of the 4‐arylpiperidine group suggest that lipophilic hydrogen‐bond‐accepting substituents at the 3‐position are favorable. However, the SKRs suggest that a lipophilic group with a certain size is desired [e.g., 3‐Br: Ki=2.8 nM , residence time (tres)=243 min; 3‐iPr: Ki=3.6 nM , tres=266 min]. Alternatively, additional substituents and further optimization of the molecule, while keeping a carboxylic acid at the 3‐position, can also prolong tres; this was most prominently observed in MK‐0483 (Ki=1.2 nM , tres=724 min) and a close analogue (Ki=7.8 nM ) with a short residence time.  相似文献   

12.
A series of new piperidinomethylphenoxypropylamine‐type histamine H2 receptor (H2R) antagonists with different substituted “urea equivalents” was synthesized and characterized in functional in vitro assays. Based on these data as selection criteria, radiosynthesis of N‐[6‐(3,4‐dioxo‐2‐{3‐[3‐(piperidin‐1‐ylmethyl)phenoxy]propylamino}cyclobut‐1‐enylamino)hexyl]‐(2,3‐3H2)propionic amide ([3H]UR‐DE257) was performed. The radioligand (specific activity: 63 Ci mmol?1) had high affinity for human, rat, and guinea pig H2R (hH2R, Sf9 cells: Kd, saturation binding: 31 nM , kinetic studies: 20 nM ). UR‐DE257 revealed high H2R selectivity on membranes of Sf9 cells, expressing the respective hHxR subtype (Ki values: hH1R: >10 000 nM , hH2R: 28 nM , hH3R: 3800 nM , hH4R: >10 000 nM ). In spite of insurmountable antagonism, probably due to rebinding of [3H]UR‐DE257 to the H2R (extended residence time), the title compound proved to be a valuable pharmacological tool for the determination of H2R affinities in competition binding assays.  相似文献   

13.
The synthetic details for the construction of three new dipyridotetraazapentalene derivatives, 5H‐pyrido[3″,4″:4′,5′] [1,2,3]triazolo‐ [1′,2′:1,2][1,2,3]triazolo[5,4‐b]pyridin‐6‐ium inner salt ( 8 ), 5H‐pyrido[3″,2″:4′,5′] [1,2,3]triazolo[1′,2′:1,2] [1,2,3]triazolo[5,4‐b]‐pyridin‐6‐ium inner salt ( 15 ) and 5H‐pyrido[2″,3″:4′,5′] [1,2,3]‐triazolo[1′,2′:1,2][1,2,3]triazolo[4,5‐b]pyridin‐6‐ium inner salt ( 16 ) are presented. Nitration of ( 8 ) and ( 15 ) afforded the novel tetranitrodipyridotetraazapentalene derivatives, 2,4,8,10‐tetranitro‐5H‐pyrido[3″,4″:4′,5′][1,2,3]triazolo[1′,2′:1,2][1,2,3]‐triazolo[5,4‐b]‐pyridin‐6‐ium inner salt ( 3 ) and 2,4,8,10‐tetranitro‐5H‐pyrido[3″,2″:4′,5′][1,2,3]triazolo[1′,2′:1,2][1,2,3]‐triazolo[5,4‐b]‐pyridin‐6‐ium inner salt ( 4 ) in good yields. Both isomers, ( 3 ) and ( 4 ), exhibited high thermal stability (differential scanning calorimetric analysis and thermal gravimetric analysis) and were insensitive to impact (hammer/anvil test).  相似文献   

14.
An efficient and convenient method was developed for the one‐pot construction of the complex polycyclic heterocycles pyrrolo[1,2‐a:2′,1′‐c]‐/pyrido[2,1‐c]pyrrolo[1,2‐a]quinoxalinones from two simple starting materials via a gold(I)‐catalyzed domino reaction. This strategy presents an atom economical and environmentally friendly transformation, in which two new C N bonds and one new C C bond are formed in a one‐pot reaction process.  相似文献   

15.
In the presence of a Cinchona alkaloid‐based squaramide organocatalyst, the [3+2] cycloaddition of isatin‐derived azomethine ylides with maleimides proceeded readily, thus delivering the desired pyrrolidine‐fused spirooxindoles in 61–89% yields with >20:1 dr and 12 to >99 % ee. The absolute configuration of 5‐chloro‐1,5′‐dimethyl‐3′‐phenyl‐3′,3a′‐dihydro‐2′H‐spiro[indoline‐3,1′‐pyrrolo[3,4‐c]pyrrole]‐2,4′,6′(5′H,6a′H)‐trione was unambiguously determined by means of X‐ray single crystal structure analysis. The reaction mechanism was hypothesized to account for the enantioselective formation of 5‐chloro‐1,5′‐dimethyl‐3′‐phenyl‐3′,3a′‐dihydro‐2′H‐spiro[indoline‐3,1′‐pyrrolo[3,4‐c]pyrrole]‐2,4′,6′(5′H,6a′H)‐trione.

  相似文献   


16.
Copolymerization of ethylene with 1‐octadecene was studied using [η51‐C5Me4‐4‐R1‐6‐R‐C6H2O]TiCl2 [R1 = tBu (1), H (2, 3, 4); R = tBu (1, 2), Me (3), Ph (4)] as catalysts in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]. The effect of the concentration of comonomer in the feed and Al/Ti molar ratio on the catalytic activity and molecular weight of the resultant copolymer were investigated. The substituents on the phenyl ring of the ligand affect considerably both the catalytic activity and comonomer incorporation. The 1 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system exhibits the highest catalytic activity and produces copolymers with the highest molecular weight, while the 2 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system gives copolymers with the highest comonomer incorporation under similar conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Novel dyes based on the benzo[a]quinoxalino[2,3‐c]phenazine skeleton and necessary intermediates (benzo[a]phenazine‐5,6‐diones) were synthesized. The heterocyclic dyes and benzo[a]phenazine‐5,6‐diones were characterized using 1H nuclear magnetic resonance (NMR) spectroscopy and chemical ion (CI) mass spectrometry. Their spectral properties, such as absorption and emission spectra and fluorescence quantum yield, were also measured. Experimental results demonstrated that photolysis of benzo[a]quinoxalino[2,3‐c]phenazine dyes in 2‐propanol and cyclohexene oxide leads to dihydro derivatives. The same product is formed during irradiation of dye/iodonium salt photoredox pairs in monomers. These compounds absorb incident light at longer wavelength and act as in situ sensitizers. Thus, when a composition was irradiated with a xenon lamp through a 395 cutoff filter, higher conversion was achieved than under monochromatic light.  相似文献   

18.
A selective 5‐HT 1A receptor agonist : A new series of ligands acting at 5‐HT1A serotonin receptor were identified. Among them (2,2‐diphenyl‐[1,3]oxathiolan‐5‐yl‐methyl)‐(3‐phenyl‐propyl)amine (shown) possesses outstanding activity (pKi=8.72, pD2=7.67, Emax=85) and selectivity (5‐HT1A1D>150), and represents a new 5‐HT1A agonist chemotype.

  相似文献   


19.
The stereoselective synthesis of trans‐annelated pyrano[3,2‐c]benzopyrans has been achieved by intramolecular [4+2] cycloaddition of o‐benzoquinone methides that are generated in situ from o‐hydroxybenzaldehydes and unsaturated alcohols using an air‐ and moisture‐stable ionic liquid, i.e., 1‐butyl‐3‐methylimidazolium tetrafluoroborate [bmim]BF4 under mild and neutral conditions.  相似文献   

20.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号