首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X‐ray crystallographic study of 2,2′,2″,2′′′,4,4′,4″,4′′′,6,6′,6″,6′′′‐dodecanitro‐1,1′ : 3′1″ : 3″,1′′′‐quaterphenyl (DODECA) has been carried out. Nonbonding interatomic distances of oxygen atoms inside of all the nitro groups are shorter than those corresponding to the intermolecular contact radii for oxygen. By means of the DFT B3LYP/6‐31(d, p) method a difference of 136 kJ mol−1 between the X‐ray and DFT structures of DODECA was found. The bearer of the highest initiation reactivity in its molecule in solid phase should be the nitro group at 4′′′‐position, in contrast to those at 2′‐ or 2″‐positions in its isolated molecule. The most reactive nitro group in the DODECA molecule can be well specified by the relationship between net charges on nitro groups and charges on their nitrogen atoms, both of them for the X‐ray structure. The 15N chemical shift, corresponding to this nitro group for the initiation by impact and shock, correlates very well with these shifts of the reaction centers of the other six “genuine” polynitro arenes.  相似文献   

2.
In this study, the kinetics of the thermal decomposition of aminoguanidinium 5,5′‐azobis‐1H‐tetrazolate (AGAT), which is one of the promising fuel candidates of the new gas generating agents for airbags, was investigated. The kinetic model that fits the main decomposition of AGAT was examined, and the activation energy was obtained. The main decomposition of AGAT was a single elementary process according to the result of mass spectrometry. The recommended kinetic model for the main decomposition of AGAT is Avrami–Erofeev equation (n=4). The activation energies for the main decomposition obtained under helium by non‐isothermal analysis and isothermal analysis were 207 and 209 kJ mol−1, respectively.  相似文献   

3.
Formally kinetic constants for the autoignition of methane–ammonia–oxygen–nitrogen mixtures were determined. The results obtained allow one to estimate the critical conditions and autoignition delays of the examined mixtures to assess the explosion hazard of reactors for the synthesis of hydrocyanic acid.  相似文献   

4.
Two types of polymeric sols, resorcinol‐formaldehyde (RF) and resorcinol‐furfural (RFur), were mixed in a water‐containing medium with aqueous solutions of inorganic salts: NH4ClO4, Mg(ClO4)2, and NH4NO3. After gelation and an ambient pressure drying, hybrid nanocomposites with properties of energetic materials were obtained. It was stated that salt concentration and addition of a second solvent (e.g., methanol or N,N‐dimethylformamide) to the mixture of reagents have crucial meaning for gel formation. In the case when only water was used, the mixture of organic sol/inorganic salt did not transfer from sol to gel, and precipitates were formed. Conventional drying of wet gelled composites leads to rigid material called xerogels. The RF xerogels are red and RFur xerogels are black. Typically, xerogels are transparent at low salt concentration (below 30%). The microstructure, morphology, and some other properties of chosen composites were studied by means of HR SEM, AFM, XRD, DTA/TG, and N2 adsorption isotherm techniques. SEM observation revealed that sizes of the oxidizer particles vary from less than 100 nm to ca. 1000 nm. XRD analyses also confirmed the presence of nanometer‐sized crystals of oxidizers in some formulations. The specific surface area of polymeric matrix/oxidizer composites was found to be in the range from 0.002 to 0.3 m2 g−1. After removing the salt from the composites (by extraction with boiling water), the specific surface area grows even up to 210 m2 g−1. TG/DTA analyses showed that the tested composites decompose as typical energetic materials. If pre‐heated and exposed to flame, some of them (especially RF/Mg(ClO4)2 composites) undergo violent deflagration with loud sound and flash effect.  相似文献   

5.
Monolithic materials prepared from a mixture of n‐lauryl methacrylate (LMA) and ethylene glycol dimethacrylate (EGDMA) dedicated to nano‐liquid chromatography separation were synthesized using in situ UV polymerization in 75 µm inner diameter capillary tubing. A mixture of cyclohexanol and ethylene glycol was used as a porogen to control porosity. While the preparation conditions yielded satisfactory analytical results, values of pertinent parameters turned out to be critical for obtaining columns with efficient separation. In particular, the impact of two key parameters was studied here in an attempt to identify optimal preparation conditions: (a) different concentrations of the crosslinker EGDMA and (b) different porogen compositions while the monomer to porogen ratio was kept constant. Resulting monolithic phases were characterized in terms of permeability, mean pore diameter and swelling using three different eluents (water, acetonitrile and a mixture at maximum viscosity). First, the LMA/EGDMA monolithic phases present peculiar morphology and hydrodynamic properties for 37% by weight of EGDMA, as reflected by the peak observed for their permeability and mean pore diameter. Swelling experiments revealed the coexistence of two phases in the monolithic structure: a highly crosslinked rigid phase which was insensitive to swelling in the presence of solvent and a weakly crosslinked flexible phase exhibiting significant swelling, with a transition to such a biphasic behavior taking place at 37% by weight of EGDMA. The effects of porogen composition and network swelling properties are presented based on a combination of the Flory ? Huggins theory of isotropic mixing in polymer solutions and the Flory ? Rehner theory of rubber elasticity in the affine network approximation. © 2016 Society of Chemical Industry  相似文献   

6.
Networks of ‘flexible’ and ‘rigid’ chains were synthesized. As ‘flexible’ component we have used different partially hydrogenated cis-1,4-polybutadiene. The ‘rigid’ component was synthesized from bis(1,2,4-triazoline-3,5-dione)s and biscyclohexadienes via repetitive Diels-Alder reaction. A slight excess of bis(1,2,4-triazoline-3,5-dione)s leads to polymers with 1,2,4-triazoline-3,5-dione end groups, which can easily react with the partially hydrogenated cis-1,4-polybutadiene. The influence of the extent of hydrogenation and the amount of crosslinker on the mechanical and thermal behaviour is described.  相似文献   

7.
Mo–V–X (X = Nb, Sb and/or Te) mixed oxides have been prepared by hydrothermal synthesis and heat-treated in N2 at 450 °C or 600 °C for 2 h. The calcination temperature and the presence or absence of Nb determines the nature of crystalline phases in the catalyst. Nb-containing catalysts heat-treated at 450 °C are mostly amorphous solids, while Nb-free catalysts heat-treated at 450 °C and samples treated at 600 °C clearly contain crystalline phases. TPR-H2 experiments show higher H2-consumption on catalysts with amorphous phases. Catalytic results in the oxidative dehydrogenation of ethane indicate that the selective production of the olefin is strongly related to the development of the orthorhombic Te2M20O57 or (SbO)2M20O56 (M = Mo, V, Nb) phase (the so-called M1 phase), which is mainly formed at 600 °C. This active and selective crystalline phase is characterized to show moderate reducibility and active centers enough for the selective oxidative activation of ethane with the minimum quantity possible of active centers for ethylene activation. In this sense, the best yield to ethylene has been achieved on a Mo–V–Te–Nb mixed oxide.  相似文献   

8.
In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide with bis-aldehyde, namely 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Using ethanol as a reaction medium allowed the isolation of a discrete mononuclear homoleptic complex [NiLI] (1), for which its crystal structure contains three independent molecules, namely 1-I, 1-II, and 1-III, in the asymmetric unit. The doubly deprotonated ligand LI in the structure of 1 is coordinated in a cis-manner through the azomethine nitrogen atoms and the thiocarbonyl sulfur atoms. The coordination geometry around metal centers in all the three crystallographically independent molecules of 1 is best described as the seesaw structure. Interestingly, using methanol as a reaction medium in the same synthesis allowed for the isolation of a discrete mononuclear homoleptic complex [Ni(LII)2] (2), where LII is a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the reaction of LI with methanol upon coordination to the metal center under synthetic conditions. In the structure of 2, two ligands LII are coordinated in a trans-manner through the azomethine nitrogen atom and the thiocarbonyl sulfur atom, also yielding a seesaw coordination geometry around the metal center. The charge and energy decomposition scheme ETS-NOCV allows for the conclusion that both structures are stabilized by a bunch of London dispersion-driven intermolecular interactions, including predominantly N–H∙∙∙S and N–H∙∙∙O hydrogen bonds in 1 and 2, respectively; they are further augmented by less typical C–H∙∙∙X (where X = S, N, O, π), CH∙∙∙HC, π∙∙∙π stacking and the most striking, attractive long-range intermolecular C–H∙∙∙Ni preagostic interactions. The latter are found to be determined by both stabilizing Coulomb forces and an exchange-correlation contribution as revealed by the IQA energy decomposition scheme. Interestingly, the analogous long-range C–H∙∙∙S interactions are characterized by a repulsive Coulomb contribution and the prevailing attractive exchange-correlation constituent. The electron density of the delocalized bonds (EDDB) method shows that the nickel(II) atom shares only ~0.8|e| due to the σ-conjugation with the adjacent in-plane atoms, demonstrating a very weak σ-metalloaromatic character.  相似文献   

9.
The variation of molecular mass distribution with the progress of the reaction was studied for the following: (i) sequential‐type melamine–urea–formaldehyde (MUF) resin formulations in which the sequence of addition of chemicals follows well‐defined species reactivity principles; (ii) a nonsequential MUF formulation in which simultaneous melamine and urea competition for formaldehyde yields a MF resin cocondensed with small amounts of urea. This resin became soaked with reacted and unreacted monomeric urea species. (iii) A PMUF resin, namely a MUF resin with a small proportion of phenol (7.8% by weight on melamine and urea) cocondensed with the main MUF fraction. All the formulations used were industrial resins formulations in current use. Development and variation of molecular mass fractions, from which performance and other useful resin parameters depend, have been found to depend on the type of resin formulation used for these type of aminoplastic resins. The two very different MUF resin formulations yielded different variations in molecular mass fractions during the progress of the reaction and during the so‐called ambient temperature “maturing” of the resin. The PMUF resin also showed both similar and different fractions present during manufacturing and during short term ageing at ambient temperature. While similarities in recurrent fractions and in trends are common to all the three different formulations, differences between them are also clearly observed. A major proportion of the reaction of some of the aminoplastic resins examined also occurs on ageing (i.e.“maturing” of the resin at ambient temperature), this appearing to be an essential phase of the resin preparation process. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4842–4855, 2006  相似文献   

10.
11.
Three types of anode, Pb–Sb, Pb–Ca–Sn and Pb–Co3O4, for copper electrowinning were investigated. The corrosion resistance, as evaluated by cyclic voltammetric (CV) measurements was higher for Pb–Co3O4 than for Pb–Sb and Pb–Ca–Sn. During prolonged electrowinning under galvanostatic conditions, the anodic reaction on the Pb–Co3O4 anode was depolarized by 0.053 V as compared to Pb–Sb, and by 0.106 V with respect to Pb–Ca–Sn. The composition and structure of the anodic layer were determined by XPS, X-ray and SEM analyses. The surface layer on the three anodes examined was composed mainly of PbSO4, -PbO2 and -PbO2. Different structure of the surface layer was observed: loose and highly spread coral-like structure in the case of Pb–Sb; fibrous structure in the case of Pb–Ca–Sn and dense, fine-grained structure in the case of Pb–Co3O4.  相似文献   

12.
A series of imbiber terpolymer beads was prepared by radical suspension copolymerization of styrene–divinylbenzene with varied contents of acrylated vinyl monomers, n‐butyl acrylate and 2‐ethyl hexyl acrylate, as the third comonomer. A DVB content of 6 wt % and a mixture of 60/40 wt % toluene/n‐heptane as the diluent were used throughout this study. The influence of acrylated vinyl comonomers on bead properties and swelling properties was investigated. The imbiber beads are capable of absorption and desorption of organic solvents having solubility parameters in the range of 14.9–20.9 (MPa)1/2. Styrenic imbiber beads were swelled in a toluene/n‐heptane mixture of 50% by volume and the kinetics of absorption was studied. The imbiber beads could absorb the toluene/n‐heptane mixture completely within 20 min and yielded a maximum swelling ratio of 6.8. The diffusion coefficient values of these beads were in the range of 6.40 × 10−6 to 1.52 × 10−5 cm2 s−1. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 504–516, 2001  相似文献   

13.
Quaternary Ni–Co–W–B amorphous alloys were prepared by chemical reduction of the aqueous solution of nickel and cobalt salts and sodium tungstate with potassium borohydride. The catalytic activities of the as-prepared materials were measured through liquid phase hydrogenation of benzene under moderate pressure. In comparison with Ni–Co–B, the as-prepared Ni–Co–W–B amorphous alloys showed superior activity, attributable to the promoting effect of tungsten on the microstructure of the alloys as revealed by XPS, XRD and DSC measurements.  相似文献   

14.
Electroless deposition has been used to synthesize a series of Au–, Ag–, and Cu–Pd/SiO2 bimetallic catalysts having incremental surface coverages and compositions of each group IB metal. Thermodynamically unstable, yet kinetically stable, electroless bath(s) were developed using metal bis-cyano salts of the group 1B metal and N2H4 (for Au and Ag) or DMAB (for Cu) as reducing agents. The times (1–2 h) and profiles (1st order in group 1B metal concentration) observed for complete deposition indicate good kinetic control of the electroless deposition process. The bimetallic catalysts have been characterized using selective chemisorption, atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR) of adsorbed CO, and X-ray photoelectron spectroscopy (XPS) techniques. Decreases in Pd surface sites with addition of IB metals confirm deposition onto the supported Pd nanoparticle surfaces. FTIR studies suggest that deposition of Cu and Ag are selective towards Pd(1 1 1) sites, while Au deposits non-discriminately on all Pd sites. Finally, XPS measurements for each family of bimetallic catalysts suggest a net electron transfer from the Pd to the deposited metal.  相似文献   

15.
An X‐ray crystallographic study of 2,2″,4,4′,4″,6,6′,6″‐octanitro‐1,1′ : 3′,1″‐terphenyl (ONT) has been carried out. The dihedral angles between benzene rings vary from 84.9° to 89.4°. Nonbinding interatomic distances of oxygen atoms inside all the nitro groups are shorter than the intermolecular contact radii for oxygen. On the basis of the DFT B3LYP/6‐31(d, p) method it was found that the difference between the X‐ray structure in the solid phase and DFT result for the gas phase is 98 kJ mol−1, and the bearer of the highest initiation reactivity of the ONT molecule in the solid phase should be the nitro group at 4″‐position, in contrast to those at 4′‐ or 6′‐position that play this role in the isolated molecule. It has been stated that the nitro groups at the reaction centers of the ONT molecule are relatively well specified by their 15N NMR chemical shifts.  相似文献   

16.
A different series of new polystyrene–clay nanocomposites have been prepared by grafting polymerization of styrene with vinyl‐montmorillonite (MMT) clay. The synthesis was achieved through two steps. The first step is the modification of clay with the vinyl monomers, such as N,N‐dimethyl‐n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, triphenyl‐4‐vinylbenzyl‐phosphonium chloride, and tri‐n‐butyl‐4‐vinylbenzyl‐phosphonium chloride. The second step is the polymerization of styrene with different ratios of vinyl‐MMT clay. The materials produced were characterized by different physical and chemical methods: (1) IR spectra, confirming the intercalation of the vinyl‐cation within the clay interlayers; (2) thermogravimetric analysis (TGA), showing higher thermal stability for PS–nanocomposites than polystyrene (PS) and higher thermal stability of nanocomposites with of phosphonium moieties than nanocomposites with ammonium moieties; (3) swelling measurements in different organic solvents, showing that the swelling degree in hydrophobic solvents increases as the clay ratio decreases; (4) X‐ray diffraction (XRD), illustrating that the nanocomposites were exfoliated at up to a 25 wt % of organoclay content; and (5) scanning electron microscopy (SEM), showing a complete dispersion of PS into clay galleries. Also, transmission electron microscopy (TEM) showed nanosize spherical particles of ~ 150–400 nm appearing in the images. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3739–3750, 2007  相似文献   

17.
The properties of styrene–acrylonitrile (SAN) and ethylene–propylene–diene (EPDM) blends containing different types of calcium carbonate filler were studied. The influence of mixing type process on the blend properties was also studied. Two different mixing processes were used. The first one includes mixing of all components together. The other process is a two‐step mixing procedure: masterbatch (MB; EPDM/SAN/filler blend) was prepared and then it was mixed with previously prepared polymer blend. Surface energy of samples was determined to predict the strength of interactions between polymer blend components and used fillers. The phase morphology of blends and their thermal and mechanical properties were studied. From the results, it can be concluded that the type of mixing process has a strong influence on the morphological, thermal, and mechanical properties of blends. The two‐step mixing process causes better dispersion of fillers in blends as well as better dispersion of EPDM in SAN matrix, and therefore, the finest morphology and improved properties are observed in blends with MB. It can be concluded that the type of mixing process and carefully chosen compatibilizer are the important factors for obtaining the improved compatibility of SAN/EPDM blends. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The most known effects of endogenous Cushing’s syndrome are the phenotypic changes and metabolic consequences. However, hypercortisolism can exert important effects on other endocrine axes. The hypothalamus–pituitary–thyroid axis activity can be impaired by the inappropriate cortisol secretion, which determinates the clinical and biochemical features of the “central hypothyroidism”. These findings have been confirmed by several clinical studies, which also showed that the cure of hypercortisolism can determine the recovery of normal hypothalamus–pituitary–thyroid axis activity. During active Cushing’s syndrome, the “immunological tolerance” guaranteed by the hypercortisolism can mask, in predisposed patients, the development of autoimmune thyroid diseases, which increases in prevalence after the resolution of hypercortisolism. However, the immunological mechanism is not the only factor that contributes to this phenomenon, which probably includes also deiodinase-impaired activity. Cushing’s syndrome can also have an indirect impact on thyroid function, considering that some drugs used for the medical control of hypercortisolism are associated with alterations in the thyroid function test. These considerations suggest the utility to check the thyroid function in Cushing’s syndrome patients, both during the active disease and after its remission.  相似文献   

19.
BACKGROUND: Polymer/clay (silicate) systems exhibit great promise for industrial applications due to their ability to display synergistically advanced properties with relatively small amounts of clay loads. The effects of various compatibilizers on styrene–ethylene–butylene–styrene block copolymer (SEBS)/clay nanocomposites with various amounts of clay using a melt mixing process are investigated. RESULTS: SEBS/clay nanocomposites were prepared via melt mixing. Two types of maleated compatibilizers, styrene–ethylene–butylene–styrene block copolymer grafted maleic anhydride (SEBS‐g‐MA) and polypropylene grafted maleic anhydride (PP‐g‐MA), were incorporated to improve the dispersion of various amounts of commercial organoclay (denoted as 20A). Experimental samples were analyzed using X‐ray diffraction and transmission electron microscopy. Thermal stability was enhanced through the addition of clay with or without compatibilizers. The dynamic mechanical properties and rheological properties indicated enhanced interaction for the compatibilized nanocomposites. In particular, the PP‐g‐MA compatibilized system conferred higher tensile strength or Young's modulus than the SEBS‐g‐MA compatibilized system, although SEBS‐g‐MA seemed to further expand the interlayer spacing of the clay compared with PP‐g‐MA. CONCLUSION: These unusual results suggest that the matrix properties and compatibilizer types are crucial factors in attaining the best mechanical property performance at a specific clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号