首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Ergonomics》2012,55(2):167-186
An experimental set up was fabricated to measure the pressure distribution on the seat pan and back-rest of a tractor seat. Experiments were conducted with four different seat pans having radius of curvatures of 60, 75, 90 and cm, four backrests with radius of curvatures of 30, 60, 90 and cm, and three back-rest inclinations of 0°, 5° and 10° on representative Indian tractor operators. The subjective assessment of perceived comfort at the seat-operator interface was also recorded. Experiments were conducted in a randomized block design and the data obtained were analysed using suitable computer packages. Results indicate that all the parameters, namely seat pan, back-rest profile curvatures and the back-rest angle of inclination, affect the pressure distribution. It is concluded that a seat pan with radius of curvature 75cm, back-rest with radius of curvature 30 cm and back-rest inclination of 10° are the most suitable parameters for Indian tractor operators.  相似文献   

2.
The present work investigates the contact forces between sitters and seat as well as their correlations with perceived discomfort. Twelve different economy class aeroplane seat configurations were simulated using a multi-adjustable experimental seat by varying seat pan and backrest angles, as well as seat pan compressed surface. Eighteen males and 18 females, selected by their body mass index and stature, tested these configurations for two sitting postures. Perceived discomfort was significantly affected by seat parameters and posture and correlated both with normal force distribution on the seat-pan surface and with normal forces at the lumbar and head supports. Lower discomfort ratings were obtained for more evenly distributed normal forces on the seat pan. Shear force at the seat pan surface was at its lowest when sitters were allowed to self-select their seat-pan angle, supporting that a shear force should be reduced but not zeroed to improve seating comfort.

Practitioner Summary: The effects of seat-pan and backrest angle, anthropometric dimensions and sitting posture on contact forces and perceived discomfort were investigated using a multi-adjustable experimental seat. In addition to preferred seat profile parameters, the present work provides quantitative guidelines on contact force requirement for improving seating comfort.  相似文献   


3.
In this study the influence of chair characteristics on comfort, discomfort, adjustment time and seat interface pressure is investigated during VDU and non-VDU tasks: The two investigated office chairs, both designed according to European and Dutch standards are different regarding: 1) seat cushioning and shape, 2) backrest angle and 3) controls. Thirty subjects in total, both male and female, participated in two experiments: twenty in the first and ten in the second.Significant differences are found for ease of adjustment and adjustment time of controls, independent of the tasks. Related to tasks, a significant difference was found for the backrest range of motion. For non-VDU tasks a larger range of backrest motion was preferred by 70% of the subjects. The chair design differences were most clear for comfort and adjustment time of controls, followed by comfort of backrest angle. No differences are found between seat pan comfort and discomfort, first impressions and peak interface pressure.  相似文献   

4.
Tewari VK  Prasad N 《Ergonomics》2000,43(2):167-186
An experimental set up was fabricated to measure the pressure distribution on the seat pan and back-rest of a tractor seat. Experiments were conducted with four different seat pans having radius of curvatures of 60, 75, 90 and infinity cm, four back-rests with radius of curvatures of 30, 60, 90 and infinitity cm, and three back-rest inclinations of 0 degrees , 5 degrees and 10 degrees on representative Indian tractor operators. The subjective assessment of perceived comfort at the seat-operator interface was also recorded. Experiments were conducted in a randomized block design and the data obtained were analysed using suitable computer packages. Results indicate that all the parameters, namely seat pan, back-rest profile curvatures and the back-rest angle of inclination, affect the pressure distribution. It is concluded that a seat pan with radius of curvature 75 cm, back-rest with radius of curvature 30 cm and back-rest inclination of 10 degrees are the most suitable parameters for Indian tractor operators.  相似文献   

5.
The perception of vehicle ride comfort is influenced by the dynamic performance of full-depth foam used in many vehicle seats. The effects of the thickness of foam on the dynamic stiffness (i.e., stiffness and damping as a function of frequency) of foam cushions with three thicknesses (60, 80, and 100 mm), and the vibration transmitted through these cushions at the seat pan and the backrest were measured with 12 subjects (6 males and 6 females). With increasing thickness, the stiffness and the damping of the foam decreased. With increasing thickness of foam at the seat pan, the resonance frequencies around 4 Hz in the vertical in-line and fore-and-aft cross-axis transmissibilities of the seat pan cushion and the backrest cushion decreased. For the conditions investigated, it is concluded that the thickness of foam at a vertical backrest has little effect on the vertical in-line or fore-and-aft cross-axis transmissibilities of the foam at either the seat pan or the backrest. The frequencies of the primary resonances around 4 Hz in the vertical in-line transmissibility and the fore-and-aft cross-axis transmissibility of foam at the seat pan were highly correlated. Compared to sitting on a rigid seat pan with a foam backrest, sitting with foam at both the seat pan and the backrest reduced the resonance frequency in the vertical in-line transmissibility of the backrest foam and increased the associated transmissibility at resonance, while the fore-and-aft cross-axis transmissibility of the backrest was little affected. Compared to sitting without a backrest, sitting with a rigid vertical backrest increased the resonance frequency of the fore-and-aft cross-axis transmissibility of the seat pan cushion and increased the transmissibility at resonance.Relevance to industryThe transmissibility of a seat is determined by the dynamic properties of the occupant of the seat and the dynamic properties of the seat. This study shows how the thicknesses of foam at a seat pan and foam at a backrest affect the in-line and cross-axis transmissibilities of the foams at the seat pan and the backrest. The findings have application to the design of vehicle seats to minimise the transmission of vibration to the body.  相似文献   

6.
Passengers and crew on fast boats can experience high magnitudes of whole-body vibration and mechanical shocks that may present risks to health and cause discomfort. This study investigated the influence of reclining a seat on the discomfort caused by fast-boat motion and whether discomfort can be predicted by overall ride values according to current standards. Subjects judged the discomfort of simulations of a recorded fast boat motion in a seat reclined by 0°, 15°, 30°, 45°, or 60°. Reclining the seat caused no significant change in overall discomfort, suggesting that if a reclined seat can be shown to reduce risks of injury it may be acceptable in respect of comfort. The findings are inconsistent with the predictions of standards and show that revised frequency weightings are required to account for seat pan or seat back inclination.  相似文献   

7.
Tractor driving imposes a lot of physical and mental stress upon the operator. If the operator's seat is not comfortable, his work performance may be poor and there is also a possibility of accidents. The optimal design of tractor seat may be achieved by integrating anthropometric data with other technical features of the design. This paper reviews the existing information on the tractor seat design that considers anthropometry and biomechanical factors and gives an approach for seat design based on anthropometric data. The anthropometric dimensions, i.e. popliteal height sitting (5th percentile), hip breadth sitting (95th percentile), buttock popliteal length (5th percentile), interscye breadth (5th and 95th percentile) and sitting acromion height (5th percentile) of agricultural workers need to be taken into consideration for design of seat height, seat pan width, seat pan length, seat backrest width and seat backrest height, respectively, of a tractor. The seat dimensions recommended for tractor operator's comfort based on anthropometric data of 5434 Indian male agricultural workers were as follows: seat height of 380 mm, seat pan width of 420–450 mm, seat backrest width of 380–400 mm (bottom) and 270–290 mm (top), seat pan length of 370±10 mm, seat pan tilt of 5–7° backward and seat backrest height of 350 mm.

Relevance to industry

The approach presented in this paper for tractor seat design based on anthropometric considerations will help the tractor seat designers to develop and introduce seats suiting to the requirements of the user population. This will not only enhance the comfort of the tractor operators but may also help to reduce the occupational health problems of tractor operators.  相似文献   


8.
《Ergonomics》2012,55(5):617-628
A shoe wearer's comfort is related to the shape of the footbed of a shoe. Even though the footbed shape is important in footwear design, there exists no methodology to evaluate the existing guidelines used in last making. Thirty-two females participated in an experiment where heel seat length, heel seat inclination and heel height were investigated using the profile assessment device. The dependent variables were plantar pressure and perceived feeling of each participant. The results show that perceived feel is best for wedge angles of 4° and 5° at a heel height of 25 mm, 10° and 11° at a heel height of 50 mm and 16° and 18° at a heel height of 75 mm. A regression model was derived and this explained approximately 80% of the variation of perceived feeling with the contact area, peak plantar pressure and percentage of force acting on the forefoot region. Both heel wedge angle and heel seat length play an important role in the perceived feel of high-heeled shoes. This study, in relation to the load-bearing heel part of a shoe, highlights the importance of good footbed design. The findings can be used to design footwear with enhanced comfort.  相似文献   

9.
Changes in the seating condition may change the body posture which could affect the transmission of vibration through a vehicle seat. This study investigates the effect of different seating conditions on the transmission of vibration through a car seat. Ten male subjects sat on the passenger seat of a sedan car driven at 60 km/h adopting one of six conditions at a time. The VDV was measured on the seat and backrest. Backrest contact affected the VDV measured on the seat pan in the z- and y-axis only. Increasing the backrest angle increased the VDV at the backrest in the x-direction and reduced the VDV at the backrest in the z-direction. With the increase in the backrest angle, the total VDV at the backrest became higher than the total VDV on the seat pan. The study showed no effect of foot position and contact with a headrest on the VDVs.Relevance to industryThis research presents the effect of the seating condition on the transmission of vibration through the seat pan and backrest of a car seat. Research of this kind may help seat manufacturers recommend seating conditions that reduce discomfort caused by whole-body vibration.  相似文献   

10.
《Ergonomics》2012,55(11):1400-1414
Abstract

The percentage of passengers that prefer travelling in groups is increasing. In most vehicles, passengers sit side by side and need to turn their body to be engaged in the conversation with their fellow travellers. However, rotating the body could lead to discomfort which influences conversation quality. The aim of this research is to study the effect of seat configuration on the (dis)comfort experience, conversation quality and posture. Experiments in which participants were asked to talk to each other while sitting at the same distance (1 m) were conducted in four seating arrangements (with seat-belts on), where the angle between the forward directions of two seats were positioned at 0° (side by side), 22.5°, 90° and 120° (almost opposite each other), respectively. Optical tracking has been deployed and the collected data were processed with MatLab® to acquire postural angles over time. Questionnaires were also used to evaluate the perceived (dis)comfort and the quality of the conversation. Experiment results indicate that the 120° configuration scored the best in the overall comfort and the quality of conversation, but only slightly better than the 90° configuration.

Practitioner summary: Seating side by side is not optimal to have a comfortable conversation with your seatmate. To improve comfort and quality of conversation in future vehicles, we tested four seating arrangements analysing the effect of seat layout on (dis)comfort experience. Statistical analysis of objective and subjective data shows the optimal configuration for a comfortable conversation.

Abbreviation: LPD: localized postural discomfort; PDF: probability density function; OCRA: occupational repetitive action  相似文献   

11.
A newly developed work seat for industrial sewing operations was compared with a traditional sewing work seat to evaluate the effectiveness of design features. The new seat was designed with special seat-pan and backrest features to accommodate the musculoskeletal geometry of a low sit-stand posture. The seat-pan consisted of a pelvic support which supported the ischial tuberosities and areas behind them, and a thigh support which maintained the thighs at a 15 degrees downward angle, resulting in a 105 degrees trunk-thigh angle. The backrest consisted of a lumbar support which preserved lumbar lordosis and a thoracic support which supported the upper back during backward leaning. The traditional work seat was similar to an office chair (i e, a large horizontal seat-pan and a wide backrest) with the exception of having a higher than normal seat-height. This investigation consisted of three studies to compare the seats: (1) A user comfort and acceptance experiment which compared the initial psychophysical responses of 50 industrial sewers when introduced to the new seat; (2) a backrest usage experiment which compared the duration of backrest use among 10 industrial sewers; and (3) a follow-up experiment to evaluate chair preference after extended use of the new seat. The results of the user comfort and acceptance experiment found that the new work seat had greater comfort and user preference; the results of the backrest usage experiment found that the new seat had greater backrest use than the traditional seat; the results of the follow-up experiment found that the preference for the new seat was maintained over time and not due to a Hawthorne Effect.  相似文献   

12.
The purposes of this study were to characterize the influence of seat back angle variations on the neck comfort of sleeping passengers without a pillow and provide suggestions for the design of economy-class seats. In this study, 17 subjects were subjected to a sleep experiment to test the effect of the backrest angle on head and neck rotation and the fatigue level of the neck muscles. The results showed that a reclined backrest (positioned at 110°) caused greater rotation of the head and neck and greater fatigue of the neck muscles than a vertical backrest. Additionally, the higher was the subject's head extended above the top of the backrest, the more complicated the head and neck rotation was and the more intense the stretching of muscles was. We conclude that, when sleeping in a sitting position without head support, passengers were more likely to experience neck muscle fatigue with the reclined backrest than with the vertical backrest. Passenger height was also found to be an important factor contributing to head and neck fatigue. On the basis of the experimental results, we offer suggestions for the design of backrests to improve passengers' sleeping experience. Our research and suggestions provide a new path for innovation in the design of economy-class seats and could help to improve the travel experience.  相似文献   

13.
Seat pitch, defined as the distance from a point on the back of one seat to the same point on the seat in front, is one of the most important factors influencing aircraft seating comfort. This study assessed the influence of different airline seat pitches on subjective ratings of discomfort and body-seat interface contact pressures. This was a laboratory within-subjects study using an aircraft interior mock up to vary seat pitch. Twelve participants completed 1 h of sitting in each of five different seat pitches (28inches, 30inches, 32inches, 34inches, and 36inches). Interface pressure mats measured seat and backrest pressure distribution, subjective rating scales were used to measure overall and local body region discomfort. The results showed that overall body and local body region discomfort ratings tend to be lower when the seat pitch increased from 28 inches to 36 inches (p < 0.05). For pressure variables, the upper back average contact area, upper/lower back average contact pressure, upper/lower back average peak contact pressure, right buttock average contact area, left/right thigh buttock average peak contact pressure, and left buttock average peak contact pressure were significantly affected by seat pitch(p < 0.05). Separate analyses support that seat pitch was more strongly correlated with backrest interface pressure than with seat pan pressure. In conclusion, seat pitch was found to be an important factor associated with body-seat contact pressure and discomfort ratings.  相似文献   

14.
National and International Standards (e.g. BS 6841 and ISO 2631-1) provide methodologies for the measurement and assessment of whole-body vibration in terms of comfort and health. The EU Physical Agents (Vibration) Directive (PAVD) provides criteria by which vibration magnitudes can be assessed. However, these standards only consider upright seated (90°) and recumbent (0°) backrest angles, and do not provide guidance for semi-recumbent postures. This article reports an experimental programme that investigated the effects of backrest angle on comfort during vertical whole-body vibration. The series of experiments showed that a relationship exists between seat backrest angle, whole-body vibration frequency and perceived levels of discomfort. The recumbent position (0°) was the most uncomfortable and the semi-recumbent positions of 67.5° and 45° were the least uncomfortable. A new set of frequency weighting curves are proposed which use the same topology as the existing BS and ISO standards. These curves could be applied to those exposed to whole-body vibration in semi-recumbent postures to augment the existing standardised methods. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This article reports new experimental data systematically investigating the effect of backrest angle on discomfort experienced. It demonstrates that most discomfort is caused in a recumbent posture and that least was caused in a semi-recumbent posture.  相似文献   

15.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

16.
This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.  相似文献   

17.
Automobile seat greatly affects the ride comfort of drivers in a prolonged driving. Not only the layout parameters of automobile seats, such as seat height, cushion inclination angle, backrest inclination angle, etc, but also the backrest surface related with lumbar support all affect the seating comfort. The human body-seat system includes the three-dimensional data of body based on anatomy and anthropometry, three-dimensional data of seat and adjustable assembly interaction between body and seat based on human body kinematics. Body height and driving posture are adjusted in POSER software, then the solid model of human skin, skeleton and muscle are created in ANSA software, and the integrated model of body-seat system is created in ABAQUS software. The adjustment of the lumbar support parameters is achieved by setting boundary condition of lumbar support region of seats. The finite element model of human body-seat system is validated by comparison to available literature results. At last the finite element model is applied to analyze the effect of lumbar support parameters of seats on the interaction between body and seat under the action of gravity. The pressure value and distribution, contact area, total force of backrest and intervertebral disc stress are obtained. The result shows that the optimal thickness of seat's lumbar support size for the seating comfort is 10 mm after comprehensive comparison and evaluation.Relevance to industry: This study investigated the effects of lumbar support on seating comfort, and can be used to protect the lumbar health. The modeling and simulation method can be applied for the optimization design of vehicle seats.  相似文献   

18.
The human–seat interfaces were analyzed to determine the differential distribution of the body weight to the components of seat. Fifteen volunteers were tested on a simulated seat system with two piezoelectric force platforms, one placed as chair seat pan and the other placed on the floor surface as footrest. The seated configurations included back inclines (75° and 80°), upright (90°) and reclines (95°, 105° and 115°), absence or presence of armrest (adjusted at 62–68 cm of height), forward and backward sloping of the seat pan, and supported and unsupported back. The armrest and backrest assemblies were isolated from the force platforms. The difference in the body weight (kgf) to the sum of forces recorded at seat pan and feet yielded the extent of weight transferred to other features (e.g., backrest and armrest). The weight distributed at seat was 10–12% less at back inclines (p<0.01) as compared to upright unsupported sitting. With the backrest reclined beyond 95°, the weight at seat gradually decreased by 9% at 115° recline. The load distributed at feet varied narrowly; however, it was significantly greater (p<0.01) at upright supported back, compared to unsupported back. The height of the armrest was optimized at 68 cm, since the weight distribution at seat pan consistently reduced by 12% at that height, as compared to the absence of armrest (F(4,524)=8.80, p<0.05). The suggested height of the armrest corresponded to 40% of the body stature of the selected volunteers. The load distributed at feet was 18% greater with the presence of armrest, indicating that a part of the weight of the upper leg fell on the seat pan, when the armrest was absent. The weight fell on the seat in slouch posture was 5% less than in upright sitting, while the weight at feet was marginally higher in slouch than in upright posture. The study maintained that the horizontal as well as 5° forward slope of the seat might be the preferred choice, since the load distributed at seat was highest at backward sloping seat for all conditions of supported and unsupported back. The study reaffirms that the backrest and armrest have conjoint influence in reducing the load distributed at seat, which in turn might help in mitigating stress on the spinal and other paraspinal structures.

Relevance to Industry

The human–seat interface analysis and understanding of body weight distribution to the components of seat may be beneficial for ergo-design application in optimizing parameters for chair configurations that provide comfort and safety to the user.  相似文献   


19.
ObjectiveThis study aimed to assess the effects of backrest inclination and vibration frequency on muscle activity in a dynamic environment using a musculoskeletal model.MethodThe muscle activity modeling method was used to analyze a full body musculoskeletal system of a seated person with a public domain rigid body model in an adjustable car seat. This model was established using AnyBody Modeling System, based on the inverse dynamic approach. And the min/max criterion in dealing with the muscle redundancy problem. Ten healthy subjects were exposed to whole body vibration (WBV) with five frequencies (3, 4.5, 6, 7, and 8 Hz) in the vertical direction in a randomized order on three separate days. The displacement of the seat-pan and head was measured using a hybrid Polaris spectra system to obtain the seat-to-head (STH) transmissibility. Muscle oxygenation was measured using near-infrared spectroscopy. The validity of the model was tested using STH transmissibility and muscle oxygenation.ResultsIncreased vibration frequency caused high muscle activities of the abdomen and the right leg with a backrest forward inclination angle. The muscle activities of the left leg decreased at a backrest backward inclination except at inclination angles of 15° and 30°. Muscle activity of the lumbar suddenly increased at a backrest inclination angle of 5° and vibration frequency of 5 Hz. Muscle activities were higher under vibration than that without vibration.ConclusionVibration frequency significantly affected the muscle activity of the lumbar area. Likewise, the inclination degree of the backrest significantly affected the muscle activities of the right leg and the abdomen. The combination of vibration and forward inclination of the backrest can be used to maximize the muscle activity of the leg, similar to the abdomen and lumbar muscles.Relevance to the industryThe musculoskeletal model established in the present study provides a method that can be used to investigate the biomechanical response of seated drivers to WBV. This model helps protect drivers from occupational injury.  相似文献   

20.
《Ergonomics》2012,55(5):518-530
The objective of this study was to determine the influence of scapular support on the effects of lumbar support and to prove that a high and straight backrest is inappropriate. In literature the importance of a lumbar support is noted, although data about optimal dimensions is an under-researched topic and in earlier studies on force distribution and muscle activity the backrest had a fixed form. The lumbar support is needed to maintain the lumbar lordosis but no studies deal with the question of the precise dimensions of the backrest at shoulder level. With a specially designed apparatus, forces on shoulder and seat were measured separately, and the force on the pelvis calculated, while varying seat and backrest inclination within the range from 0° to 17°. Seat-to-backrest angle (at the level of lumbar support) was kept constant at 90°. The distance between the tangent to the lumbar support and the parallel tangent to the scapular support was varied from 0, 2, 4, 6 and 8 cm. This distance is called the free shoulder space. Electromyography was measured at the erector spinae at the levels of the L1, T8 and T5 vertebrae. For all seat angles, a free shoulder space of d=0 cm resulted in the highest back muscle activity. In agreement with the biomechanical model, EMG activity reduced with an increase of seat tilt and increase of free shoulder space. With increasing free shoulder space, a larger part of the total backrest force was carried by the lumbar support. This study shows that a high and straight backrest overrules lumbar support. Offering free shoulder space of at least 6 cm reduces back muscle activity and allows for lumbar support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号