首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and magnetic properties were studied for bulk nanocrystalline Nd-Fe-B permanent magnets that were prepared at 650 °C for 3 min under 300 MPa using the SPS-3.20-MK-V sintering machine and the hot pressed magnets were then submitted to hot deformation with height reduction of 50%,60%,70%,80%,and 85%.Effects of height reduction(HR) and deformation temperature on the structure and magnetic properties of the magnets were investigated.The crystal structure was evaluated by means of X-ray diffraction(XRD) and the microstructure was observed by transmission electron microscopy(TEM).The magnetic properties of the magnets were investigated by vibrating sample magnetometer(VSM).As the height reduction increased,the remanence(B r) of the magnets increased first,peaks at 1.3 T with HR=60%,then decreased again,and the coercivity(H ci) of the magnets decreased monotonically.On the other hand,as the deformation temperature increased,the B r of the magnets increased first,peaks at 1.36 T with HR=60%,then decreased again,and the H ci of the magnets decreased monotonically.Under optimal conditions,the hot deformed magnet possessed excellent magnetic properties as B r =1.36 T,H ci =1143 kA/m,and(BH) max =370 kJ/m 3,suggesting the good potential of the magnets in practical applications.  相似文献   

2.
An analytical model to describe the influence of surface degradation and the Ni layer itself on the magnetic properties of Ni coated Nd-Fe-B magnets is presented. Starting from the bulk magnetic properties, the dimensions, the thickness of Ni coating and the affected surface layer, J(H) demagnetization curve is calculated. Subsequently the expected values of (BH)max, and the reversible permeability are deduced from the calculated J(H) curves. For flat magnets the surface effects lead to a decrease of Br and an increase of the permeability which lowers (BH)max. For strait magnets a step in the J(H) curve appears at H = 0. The deteriorating effect of Ni coating and the surface layer scale with the dimensions of magnet and the thickness of these layers, which depend on the processing and the grain size of magnet. These effects can not be neglected if one or more dimensions of a Ni coated magnet are less than about 5 mm. SmCo5 magnets show similar effects but the coercivity of the damaged surface layer is higher. Pinning type Sm2Co17 magnets show almost no deterioration on surface due to machining. As a result, Sm-Co magnets are better suited for applications with dimensions smaller than about 2 mm.  相似文献   

3.
We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd1-xYx)13.80Feba1Al0.24Cu0.1B6.04(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magnetic properties as well as service performances of the magnets were also systematically investigated.The phase constituents of the magnets have no obvious variation within the whole range of Y content,while the main phase grain...  相似文献   

4.
In the present work, anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets were prepared with different Nd-Fe-B contents. It is found that the particle distributions and ratios between the two magnetic phases have important roles in the magnetic properties, microstructures and thermal stability of the magnets. With increase of Nd-Fe-B content, the saturation magnetization of the anisotropic hybrid magnet increases significantly, however, coercivity decreases, and the demagnetization curves show magnetically single-phase behavior. The anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets exhibit a maximum energy product and remanence of 14.15 MGOe and 99.53 A·m~2/kg, respectively, when the NdFe-B content is 70 wt% at room temperature. Furthermore, the hybrid magnets also have better thermal stability at elevated temperatures due to the interaction between the two magnetic particles.  相似文献   

5.
This work studied the application of the different magnetic field used in the compaction process for die fabrication of anisotropic Nd-Fe-B bonded magnet. The static field made from Nd-Fe-B permanent magnets was used in the blending process to separate the particles each other. The SEM observation gave intuitionistic results about it. The anisotropic Nd-Fe-B bonded magnets were fabricated with warm-compaction under the electromagnetic field about 2.5 T. It is known that magnetic field is necessary for anisotropic materials fabrication for alignment. And warm compaction was used to decrease the viscousness of binder, to enhance alignment magnetic particle while press, and to get high density materials. For coercivity of Nd-Fe-B magnets decrease largely with the temperature increasing, press in proper temperature and oriented field is benefit to the magnetic characteristics and the mechanical properties of the anisotropic bonded Nd-Fe-B magnets. Finally solidifying process was performed under the pulse field of 4 T. The increment for solidifying in the field was about 15% for maximum energy product of the bonded magnet. The magnetic properties of anisotropic bonded Nd-Fe-B magnets from d-HDDR powders compact at 90 °C in alignment field of 2.5 T were: Br=8.55 kGs, iHc=12.0 kOe, (BH)max=14.57 MGOe.  相似文献   

6.
The double hard magnetic phase magnets with nominal compositions of Nd30–xDyxFe69B1(x=2, and 4) (wt.%) were prepared. The magnetic properties of the magnets were measured with a NIM-2000H hysteresigraph. The crystalline structures of the magnets were identified by X-ray diffraction (XRD). The Rietveld refinement was carried out using the FULLPROF software. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were carried out in order to investigate the microstructure of the magnets. It showed that the magnets consisted mainly of Nd2Fe14B phase, and some Nd-rich phase. Two types of matrix-phase grains in dark grey and light grey were found in the magnets with x=2 and 4. The Dy content was obviously different in the two types of grains, which proved that the double hard magnetic phases (Dy-rich and Dy-lean phases) coexisted in the magnet. It revealed that the Nd-rich phases in junction regions had fcc structure, with the unit cell parameter of about 0.52–0.56 nm. The weak superlattice spots were found in the SAD patterns of the junction Nd-rich phases with large scale. The double hard magnetic phase structure seemed to improve the magnetic properties of NdFeB magnets with high coercivity, while decrease the consumption of Dy element, compared with the single alloy magnet.  相似文献   

7.
Sintered (Pr, Dy)-(Fe1 ? y Co y )-B materials (y = 0.15–0.5 at %) have been studied. It is found that, with increasing cobalt content, the coercive force of the sintered materials decreases down to zero at y ~ 0.5. The volume contents of all phases present in the compositions with y = 0.2–0.9 are determined. The interphase boron diffusion is shown to play a key role in the formation of the magnetic properties during sintering and annealing.  相似文献   

8.
With the rapid growth in the use of NdFeB-type magnets and with the growing environmental need to conserve both energy and raw materials, the recycling of these magnets is becoming an ever important issue. In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense, sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. The resultant powder has been subsequently processed in one of two ways in order to produce permanent magnets. Firstly, the powder was subjected to a vacuum degassing treatment over a range of temperatures up to 1000°C in order to produce powder that would be suitable for the production of anisotropic bonded or hot pressed magnets. Secondly, the HD-powder has been used to produce fully dense sintered magnets; in which case optimisation of the milling time, sintering temperature and time was carried out. The optimum degassing temperature for coercive powder was found to be 700°C, giving powder with a remanence (Br) of ∼1350mT (±10 mT) and an intrinsic coercivity (Hcj) of ∼750kAm−1 (±10 kAm−1). The best sintered magnet was produced by very lightly milling the powder (30 min, roller ball mill), aligning, pressing and vacuum sintering at 1080°C for 1 hour. The magnetic properties of this magnet were: (BH)max = 290 kJm−3 (±5 kJm−3), Sr = 1240mT (±5 mT) and Hcj = 830 kAm−1 (±5 kAm−1); representing decreases of 15%, 10%, and 20% respectively, from the properties of the initial magnet.  相似文献   

9.
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications, the eutectic Tb80Fe20 (wt%) alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity (Hcj) and thermal stability. The microstructure, magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb80Fe20 contents were studied. The experimental results demonstrate that the coercivity (Hcj) of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe, and the remanence (Br) decreases not obviously by introducing 4 wt% Tb80Fe20 alloy. Meanwhile, the reversible temperature coefficients of coercivity (β) and remanence (α) of the Nd-Fe-B magnets are increased from ?0.5634%/℃ to ?0.4506%/℃ and ?0.1276%/℃ to ?0.1199%/℃ at 20–170 ℃, respectively. The Curie temperature (TC) of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb80Fe20 content. Moreover, the irreversible flux magnetic loss (hirr) is obviously reduced as Tb80Fe20 addition increases. Further analysis of the microstructure reveals that a modified microstructure, i.e. clear and continuous RE-rich grain boundary layer, is acquired in the sintered magnets by introducing Tb80Fe20 alloy. The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.  相似文献   

10.
This study is on the injection molding process for the fabricating anisotropic Nd-Fe-B bonded magnets. The effects of powder loading, particle size of the magnetic powder, polymer binder and the fabricating process on the magnetic and the mechanical properties of anisotropic Nd-Fe-B magnets were investigated. The proper powder loading, particle size and binder are 60%(vol%), 75–106 μm and PA 1010, respectively. The optimum condition for good magnetic properties of anisotropic injection bonded Nd-Fe-B magnets is mixing the binder and the chemicals in the temperature between 205–215 °C, injection temperature of 265 °C, the injection pressure of 5–6 MPa, the press time of 5 second, and molding temperature of 80 °C. The magnetic properties of anisotropic bonded Nd-Fe-B magnets made in above conditions from d-HDDR powder were: Br=0.72 T, iHc=983 kA/m, (BH)max=75 kJ/mc.  相似文献   

11.
Grain boundary diffusion(GBD) process is an important approach for producing Nd-Fe-B magnets with high coercivity and high thermal stability.The GBD for hot-deformed Nd-Fe-B magnets with nanocrystalline micro structure is more complicated compared to sintered magnets.Here,we investigated the effects of different GBD methods,i.e.,intergranular addition(in-situ GBD 1#),in-situ GBD from magnet surface during hot pressing and hot deformation(in-situ GBD 2#),and conventional GBD,on the magnetic prope...  相似文献   

12.
Below room temperature the spin reorientation phase transition was observed for Nd2Fe14B magnet with Tsr ∼ 135 K. Spin reorientation refers to a change in the preferred direction of the M magnetization. The Nd2Fe14B magnet changes from a uniaxial or easy-axis material at TTsr to an easy-cone material at T <Tsr. The transition from easy-axis to easy-cone anisotropy is an interesting physical phenomenon, which is important in a practical sense. The purpose of the present work is to study the electrical and magnetic properties of Nd2Fe14B magnet in the interval of temperatures ∼ 15–273 K in demagnetized and magnetized states. For the first time measurements of electrical resistance (ρ) and a complex magnetic susceptibility (χ = χ′+iχ″) of Nd2Fe14B alloy in demagnetized state and at two directions of magnetization in a range of temperatures ∼ 15–273 K were carried out. The following new effects were found out: (i) It was established that occurrences of the positive contribution to the value of ρ at the perpendicular magnetization and the negative contribution at the parallel magnetization. (ii) It was shown that, the value of the magnetic contribution in resistivity at the parallel magnetization, Δρ|, has a minimum in a vicinity of temperature of the spin reorientation transition, Tsr. (iii) It was established the occurrence of maximums of χ′ and χ″ values in a vicinity of temperature of the spin reorientation transition. (iv) It was established that Tsr value at perpendicular magnetization goes down and at parallel magnetization increases in comparison with the demagnetized sample. The received data have the practical importance for the application of Nd2Fe14B based permanent magnets at low temperatures.  相似文献   

13.
Sintered (Nd1 ? x ? z Dy x Sm2)-(Fe1 ? y Co y )-B (atomic fractions x = 0.27, 0.32, 0.39; y = 0.17, 0.23, 0.28; and z = 0.04–0.18) materials have been studied. It is shown that the magnetic moments of samarium ions and the iron-cobalt sublattice are ordered antiferromagnetically and, as the samarium content increases, the content of dysprosium and samarium in the basic A magnetic phase decreases and increases, respectively. As the samarium content (z) in sintered magnets (Nd0.61 ? z Dy0.39Sm z )17.5(Fe0.72Co0.28)76.3B6.2 increases, the thermal induction coefficient is found to decrease monotonically from 0.021 to 0.006%/°C, i.e., by 3.5 times. In this case, residual inductance B r is unchanged (0.8 T).  相似文献   

14.
This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm_(8.5)Fe_((85.8-x)Co_(4.5)Zr_(1.2)Nb_x(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of X-ray diffraction, vibrating sample magnetometer, flux meter and transmission electron microscope. It is found that the lattice parameter ratio c/a of TbCu_7-type crystal structure increases with Nb substitution, which indicates that the Nb can increase the stability of the metastable phase in the Sm-Fe ribbons. Nb substitution impedes the formation of magnetic soft phase a-Fe in which reversed domains initially form during the magnetization reversal process. Meanwhile, Nb substitution refines grains and leads to homogeneous micro structure with augmented grain boundaries. Thus the exchange coupling pining field is enhanced and irreversible domain wall propagation gets suppressed. As a result, the magnetic properties are improved and the irreversible flux loss of magnets is notably decreased. A maximum value 771.7 kA/m of the intrinsic coercivity H_(cj) is achieved in the 1.2 at% substituted samples.The irreversible flux loss for 2 h exposure at 120 ℃ declines from 8.26% for Nb-free magnets to 6.32% for magnets with 1.2 at% Nb substitution.  相似文献   

15.
After experimental evidence of intergrain exchange coupling was reported, nanocomposite magnets with high remanence and large energy products were predicted. However, the experimental values of the maximum magnetic energy product of nanocomposite bulk magnets have been much less than the theoretically predicted ones. We gave a brief review on advances in multilayer magnets. The exchange coupling and remanence enhancement were realized in nanocomposite (Nd,Dy)(Fe,Co,Nb,B)5,5/α-Fe thin films prepared by sputtering and heat treatments. Well-designed multilayer films consist of magnetically hard Nd2Fe14B-type phase with the grain size of 40 nm and magnetically soft α-Fe phase existing in the form of the continuous layers. Furthermore, we reported the structural and magnetic properties of anisotropic Nd-Fe-B thin films. The effects of thickness, deposition rates, substrate temperature, annealing temperature were studied. A high maximum energy product of (BH)max = 270 kJ/m3 was obtained for anisotropic Nd-Fe-B thin films.  相似文献   

16.
Bonded and fully-dense magnets prepared from melt-spun RE2Fe14B-type powders continue to find new applications in consumer electronics, automotive and industrial motors. The unique nanostructure of these materials promotes high magnetic performance, environmental stability and near-net shape formability. This article reviews the various types of melt spun powder from a compositional and microstructural standpoint. The powder with best overall performance and stability for bonded magnets appears to be the RE2Fe14B single phase type. Additional corrosion resistance can be achieved by coating the powder with an organic micro-dispersion prior to molding. Regarding higher performance fully dense magnets, multi-phase RE2Fe14B/RE melt spun powder offers a highly flexible precursor for hot forming near-net shape isotropic and anisotropic magnets. The composition of the melt spun powder along with the degree of hot deformation can be tailored to provide a range of magnetic properties from these types of magnet.  相似文献   

17.
The present paper is dedicated to study effect of thermal treatment parameters on the properties (residual magnetic induction fir, coercive force on magnetization iHc, temperature coefficient of magnetic induction αb within the temperature range 300–373 K) of sintered permanent magnets [Dd1–x(Dy, Tb, Ho)x]15(Fe1–yCoy)bal(Al,Cu,Ga,Ti)0.1–1.4B5.0–8.5 (at.%), where x=0.2–0.4; y = 0.2–0.3; Dd - didymium. For the magnets (Dd1–xDyx)15(Fe1–yCoy)baiB5.0–5.6 discontinuities were observed at demagnetization curves caused by appearance of magnetic phases with reduced magnetic anisotropy. iHc value nearly does not depend on temperature of thermal treatment within the range 750–1275 K at increasing of boron content (7.0–7.5at.%). Magnets doping by such elements as aluminium, copper, gallium shifts optimal temperature of the last step of thermal treatment from 900 K to 725–825 K, at the same time magnetic properties (Br, iHc αb) improve, especially with increasing of Co and Dy content. It was possible to attain the following properties for the magnets (Dd0.6Dy0.4)15(Fe0.74Co0.26)bai(Al,Cu,Ga)1.1B8.5 after optimal thermal treatment {1175 K (7, 2 ks) with further cooling at the rate 1–2 K/min, then 900 K (3.6 ks) - hardening + 775 K (3.6 ks) - hardening}: Br= 1,0 T, iHc = 1600 kA/m, BHmax = 192 kJ/m3, αb= −0,024 %/K in the temperature interval 293–373 K.  相似文献   

18.
In this article,the Sm2Co7/α-Fe nanocomposite magnets were prepared by high energy ball milling and spark plasma sintering method.The effect of soft phase content on the magnetic properties was studied.Up to 30 wt% α-Fe was added into Sm2Co7 matrix without the decrease of remanence.Optimal energy product(BH)max of 9.2 MGOe was obtained with 20 wt% α-Fe.TEM observation shows that the grain size of α-Fe is 20-50 nm which ensures a good coupling effect between soft and hard phase.One more thing needs to be mentioned is that there exists inter-diffusion between Sm-Co phase and α-Fe phase.Moreover,our results can also illustrate that the Sm2Co7/α-Fe nanocomposite magnets are able to acquire better magnetic properties than the SmCo5/α-Fe magnets prepared by the same process due to the large domain width of Sm2Co7 phase.  相似文献   

19.
An analytical field ion microscope was applied to melt-spun NdFeB magnets with various cobalt substitutions. The microstructure of melt-spun NdFeB magnets consists of three phases. Whereas the Nd2Fe14B- and the metastable Nd7Fe3-phase determine the magnetic properties of optimally quenched specimens the Nd1.1Fe4B4-phase additionally influences the magnetic behaviour of overquenched and annealed material. With Co substitution the Nd-rich phase transforms via the metastable Nd23(Fe1−xCox)75B2 intermediate stage of optimally quenched specimens to the stable Nd(Fe1−xCox)2-phase in over-quenched and annealed ribbons. From our experimental data we conclude that a nucleation model of coercivity is consistent with the magnetic measurements.  相似文献   

20.
The effect of nitridation process, i.e. temperature and time, on crystal structure and magnetic properties of SmFe9Nx inter- stitial compounds was systematically investigated. After nitridation treatment, nitrogen atoms were incorporated into SmFe9 alloys to form SnaFe9Nx interstitial compounds, which increased the distance of Fe-Fe and enhanced Fe-Fe interaction. As a result, SmFe9Nx interstitial compounds had a higher Curie temperature and more excellent magnetic properties than SmFe9 alloys. The relationships between nitridation temperature, nitridation time, nitriding efficiency, magnetic properties and phase transition were researched. It could be concluded that nitriding efficiency was strongly associated with magnetic properties and phase transition at different tem- peratures. The nitriding efficiency also had a connection with magnetic properties under different time, while no obvious phase transi- tion was found during that process. By studying nitridation process under a series of temperatures and time in this experiment, a suit- able nitridation temperature (713 K) and an ideal length of nitridation time (8 h) was decided, which would produce the optimal mag- netic behavior of SmFegNx interstitial compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号