共查询到20条相似文献,搜索用时 15 毫秒
1.
《钢铁研究学报(英文版)》2006
This study is on the injection molding process for the fabricating anisotropic Nd-Fe-B bonded magnets. The effects of powder loading, particle size of the magnetic powder, polymer binder and the fabricating process on the magnetic and the mechanical properties of anisotropic Nd-Fe-B magnets were investigated. The proper powder loading, particle size and binder are 60%(vol%), 75–106 μm and PA 1010, respectively. The optimum condition for good magnetic properties of anisotropic injection bonded Nd-Fe-B magnets is mixing the binder and the chemicals in the temperature between 205–215 °C, injection temperature of 265 °C, the injection pressure of 5–6 MPa, the press time of 5 second, and molding temperature of 80 °C. The magnetic properties of anisotropic bonded Nd-Fe-B magnets made in above conditions from d-HDDR powder were: Br=0.72 T, iHc=983 kA/m, (BH)max=75 kJ/mc. 相似文献
2.
3.
The reduction diffusion method was performed for the sludge scrap of Nd-Fe-B sintered magnets with adding Ca metal to recover the oxidized Nd-Fe-B phase. After washing the resultant powders to remove Ca metal component, the powders obtained were recycled as an isotropic magnetic powder by the melt spinning method. The magnetic properties of powders as recycled were inferior, especially for the coercivity value, due to the deletion of rare earth metals during the washing process. The adjustment of metal composition, i.e., the addition of Nd metal, at the melt spinning process improved the magnetic properties to be Br=~0.75 T, Hcj=~0.93 mA·m-1, and(BH)max=~91 kJ·m-3. The magnetic properties of the bonded magnets prepared from the composition-adjusted powders were Br=~0.66 T, Hcj=~0.92 mA·m-1, and(BH)max=~70 kJ·m-3, which are approximately comparable to the commercially available MQPB boned one(Br=~0.73 T, Hcj=~0.79 mA·m-1, and(BH)max=~86 kJ·m-3). 相似文献
4.
快淬NdFeB磁粉的制备过程中有许多因素影响磁粉性能的均匀性 ,致使出现部分低性能的磁粉 ,磁选可把低性能的磁粉分离出来。研究了磁选时辊轮转速、磁选次数以及磁场强度对快淬Nd9.5(FeCoZrAl) 84 .5B6 磁粉分离效果的影响。研究表明 ,选择合适的磁选工艺参数能有效分离低矫顽力的磁粉。与未磁选的Nd9.5(FeCoZrAl) 84 .5B6 磁粉制作的粘结磁体相比 ,磁选后的磁粉制作的粘结磁体磁性能有较大的提高 ,最佳磁性能为 :Br=697.4mT ,Hcb=44 2kA·m- 1 ,Hcj=741kA·m- 1 ,(BH) max=77kJ·m- 3。 相似文献
5.
《钢铁研究学报(英文版)》2006
In 2002 Aichi steel has developed anisotropic NdFeB bonded magnets called MAGFINE25 which has the world's strongest bonded magnet with a maximum energy product of 25 MGOe. Using MAGFINE, a power seat motor used in automobile has been new designed to achieve 50% size and 40% weight reduction, and the new motor called MF motor has been launched in 2005. MAGFINE is expected to make a big progress of automobile small motor in weight reduction. In this paper, the recent progress for the anisotropic NdFeB bonded magnet MAGFINE will be reviewed about the hydrogen treatment technique, the mechanism, the new press production technique and the motor design. 相似文献
6.
采用粉未冶金法对合金及其氮化物与粘结磁体的组织形貌、物相及磁性能进行了较为详细的研究.结果发现,均匀化退火可以明显减少Sm12.8Fe87.2合金中的富Sm相与α—Fe含量。氮化后Sm2Fe17晶格膨胀形成Sm2Fe17Nx主相,氮化20h内Sm2Fe17Nx相单胞体积膨胀超过6%,在20h有最大值△Ve/Ve=8.36%:氮化后合金中的α-Fe含量增加,未见相应用胞体积膨胀:Sm12.8Fe87.2Nx取向粘结磁体中Sm2Fe17Nx相的006衍射明显增强,而其他衍射及α-Fe的衍射减弱,易轴方向磁体的矫顽力优于磁粉的,而剩磁与最高场下磁化强度值劣于磁粉. 相似文献
7.
Application of Rare Earth Magnet Nd-Fe-B in Solid-Liquid Separation 相似文献
8.
Ching-Hwa Lee Yu-Jung Chen Ching-Hua Liao Srinivasa R. Popuri Shang-Lin Tsai Chi-En Hung 《Metallurgical and Materials Transactions A》2013,44(13):5825-5833
Neodymium-iron-boron (Nd-Fe-B) magnets were most widely applied to permanent magnetic products in the world due to their high magnetic force. The increasing growth of scrap Nd-Fe-B magnets resulted in disposal problems and the reduction of neodymium (Nd) valuable resources. In this study, we developed a simple hydrometallurgical precipitation process with pH adjustment to separate and recover Nd 100 pct recovery from scrap Nd-Fe-B magnets. Several physical and chemical methods such as demagnetization, grinding, screening, and leaching processes were also adopted to investigate the recovery of Nd and other metals from scrap Nd-Fe-B magnets. The leaching process was carried out with four leaching reagents such as NaOH, HCl, HNO3, and H2SO4. Batch studies were also conducted to optimize the leaching operating conditions with respect to leaching time, concentration of leaching reagent, temperature, and solid/liquid ratio for both HCl and H2SO4 leaching reagents. Nd was successfully separated and recovered with 75.41 wt pct from optimized H2SO4 leaching solution through precipitation. Further, the purity and weight percentage of the obtained Nd product was analyzed using scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS) analysis. An X-ray diffraction (XRD) study confirmed the obtained product of Nd was in the form of NdOOH and Nd(OH)3. 相似文献
9.
刘海洲 《稀有金属与硬质合金》2012,(3):44-46,62
对当前烧结钕铁硼永磁体制备工艺中速凝铸带、氢碎、烧结和热处理以及添加合金元素等工序进行了介绍,并对其研究进展进行综述。同时,对烧结钕铁硼永磁体行业可能的发展方向进行了展望。 相似文献
11.
12.
《钢铁研究学报(英文版)》2006
A hybrid magnet was prepared by the hot-pressing and die-upsetting of the mixture of the R-rich NdxFe93.5–xGa0.5B6 (x= 13.5 and 11.8) alloy and the R-lean NdxFe93–xNb1B6 (x = 6, 9) alloy melt-spun ribbons. The microstructure and magnetic properties of the hybrid magnet were investigated. In the hot-pressed or die-upset hybrid magnet the R-rich and R-lean alloy regions existed independently without alloying between them. The two alloy regions in the die-upset hybrid magnet were coupled effectively via a magnetostatic interaction. A texture was developed only in the R-rich Nd2Fe14B single phase alloy region in the die-upset hybrid magnet, and this led to an anisotropic nature in die-upset hybrid magnet. The die-upset hybrid magnets containing higher Nd-content (13.5 at%) host alloy shows consistently a better magnetic alignment with respect to the magnets with lower Nd-content (11.8 at%) host alloy. 相似文献
13.
14.
Anisotropic Nd-Fe-B magnets were fabricated by the single stage hot deformation (SSHD) method. The magnetic properties of the anisotropic Nd-Fe-B magnets are as follows: the maximum energy product is 234.7 kJ·m-3, remanence 1.16 T and coercivity 684.3 kA·m-1. A study of the relationship between microstructure and magnetic properties for the anisotropic Nd-Fe-B magnets was carried out. The results show that the grains of Nd2Fe14B have grown up preferentially along the direction perpendicular to the pressing direction. 相似文献
15.
Fine ground powders of Nd-Fe-B sintered magnet bulks(particle size=46~125 μm in diameter) were coated and alloyed with Yb metal by sorbing them. A significant recovery of the decreased magnetic properties of the ground powders(remanence Br=~0.95 T, coercivity Hcj =~227 kA·m-1 and maximum energy product(BH)max=~48.8 kJ·m-3) was observed in accordance with increasing temperature up to 800 ℃. The sorbing temperature and time for Yb metal vapor were optimized and after heating at 800 ℃ for 90 min and annealing subsequently at 610 ℃ for 60 min, the Br, Hcj and(BH)max values were increased to be 0.98 T, 712 kA·m-1 and 173 kJ·m-3, respectively. From the microstructural characterizations of resulting samples by using X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron probe X-ray microanalyzer(EPMA), it is found that the sorbed Yb metal uniformly covers the surface and diffuses to the Nd-rich grain boundary of fine ground powders of Nd-Fe-B sintered magnet bulks forming a(Nd,Yb)Fe2 phase. 相似文献
16.
Nd-Fe-B磁体烧结致密化过程的研究 总被引:1,自引:0,他引:1
定量描述了Nd-Fe-B磁体的烧结致密化过程, 分析了有效稀土含量、合金粉末粒度与烧结致密化过程的关系, 讨论了Nd-Fe-B磁体烧结过程的致密化机制. Nd-Fe-B磁体烧结致密化过程可分为3个阶段, 即致密化过程迅速进行阶段、缓慢进行阶段、相对稳定阶段;随着烧结温度的上升, 第一阶段表现得更为突出, 第二阶段对应的烧结时间区段大大缩短. 有效稀土含量的提高、合金粉末粒度的减小显著促进Nd-Fe-B磁体烧结致密化过程. 主相颗粒重排以及主相颗粒长大与形状适位性变化是Nd-Fe-B磁体烧结过程的两类主要致密化机制, 而且后者对于Nd-Fe-B烧结磁体实现完全致密化起着决定性的作用. 相似文献
17.
《钢铁研究学报(英文版)》2006
Some progress of research on bonded Nd-Fe-B magnets in National University of Defense Technology(NUDT) is presented in this paper. The contents include B-rich R2Fe14B-based nano composite with good performance; a model to determine of the least amount of binder; resin for high temperature application; resin encapsulating magnetic powders for long-term storage; thermoplastic polymer used for mold-pressing magnets; hybrid bonded Nd-Fe-B/Sm2Co17 magnet with a potentially useful improvements in remanence and magnetic energy product. 相似文献
18.
19.
综述了新型粘结永磁材料纳米复相钕铁硼的研发意义、组织特点、磁性能提高的基本原理、界面交换耦合强度判据、制备技术要点、最新成分、新制备技术及磁性能,并分析了存在的问题和推广应用时应注意的事项。 相似文献