首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the paper, we summarize the USA research activities in the past two years on high performance rare earth (R)-based (nano) composite, nanostructured and hybrid permanent magnets. The work discussed is organized in three major sections (i) isotropic magnets based on the R2Fe14B hard phase, (ii) anisotropic magnets based on the R2Fe14B hard phase and (iii) magnets with a R-Co hard phase (1:5 and/or 2:17), including ultrahigh temperature Sm-Co magnets, Sm-Co permanent magnets with almost zero reversible temperature coefficient of residual induction for critical applications and ultrahigh temperature Sm-Co magnets with small reversible temperature coefficient of residual induction.  相似文献   

2.
Improved mechanical properties and thermal stability of Sm-Co high temperature magnets resulting from surface modifications are reported. Compared to un-modified magnets, the modification with 15 μm sulfamate-Ni plating improved the fracture toughness by 76% and the thermal stability by 143% in vacuum and 861% in air for aging at 500 °C for up to 3000 hours. Microstructures of some specimens with and without modification were studied using SEM with EDS, and showed different fracture patterns. The improvements in mechanical properties were resulted by closing the infinite crack-origin sites on the surface of the brittle magnets with ductile metal. The striking improvement in thermal stability was achieved by sealing the Sm-Co magnets with corrosion resistive metal to limit oxidation. The adhesive bond strength between the magnet and the modified surface plays an important role in these improvements.  相似文献   

3.
Rare-earth intermetallics such as Nd2Fe14B and Sm-Co are widely used as high-performance permanent magnets, because they combine high magnetocrystalline anisotropy with reasonable magnetization and Curie temperature. The anisotropy is a combined effect of spin-orbit coupling and electrostatic crystal-field interactions. The main contribution comes from the rare-earth 4f electrons, which are well-screened from the crystalline environment but exhibit a strong spin-orbit coupling. In this limit, the magnetocrystalline anisotropy has a very transparent physical interpretation, the anisotropy energy essentially being equal to the energy of Hund's-rules 4f ion in the crystal field. The corresponding expression for the lowest-order uniaxial anisotropy constant K1 is used to discuss rare-earth substitutions, which have recently attracted renewed interest due to shifts in the rare-earth production and demand. Specific phenomena reviewed in this article are the enhancement of the anisotropy of Sm2Fe17 due to interstitial nitrogen, the use of Sm-Co magnets for high-temperature applications, and the comparison of rare-earth single-ion anisotropy with other single-ion and two-ion mechanisms.  相似文献   

4.
The magnetic microstructures of 2:17 type Sm (Co, Fe, Cu, Zr)z magnets were detected by magnetic force microscopy. Comparing the microstructures of the specimens eoated with and without Ta thin film before and after heat-treatment, it is found that: (a) as a protection layer, Ta coating layer about 20 nm thick can effectively restrain Sm volatilization under high temperature; (b) the stress built in the 2.17 type Sm-Co magnets during specimen preparation only affects some local parts of the domain structures; (c) the magnetic microstructures vary largely for specimens heat-treated at high temperature without Ta film coating due to Sm volatilization. In addition, by comparing with high coercivity Fe-Pt point tips, it is found that the Co-Cr thin-film tips are not suitable for detecting the magnetic microstructures of strong permanent magnets.  相似文献   

5.
The combination of conventional ion-plasma deposition and pulsed plasma technologies (PPT) has been applied for rare-earth Sm-Co and Nd-Fe-B based magnets, to provide them with enhanced corrosion resistance. The influence of pulsed plasma treatment on Sm-Co magnets with deposited titanium coatings has been investigated. It was revealed that the thickness of modified layer significantly depends on the thickness of initial titanium film and plasma treatment regimes. As a result of plasma treatment with energy density of 30 J/cmb for 5 pulses fine-grained layer with me thickness of 70 microns has been formed on the Sm-Co magnet with pure titanium film of 50 μm. According to SEM analyses considerable diffusion of titanium to the bulk of the magnet on the depth of 20 microns took place. Such reaction enhances strong bonding between the coating and the magnet. The effects of plasma processing on corrosion properties of Nd-Fe-B sintered magnets with ferroboron Fe80B20 (wt.%) coatings have been studied. The tests were carried out in naturally aerated sodium sulphate solutions by polarization method. It was shown that polishing of the initial surface before plasma treatment and ferroboron deposition have a strong influence on the corrosion behavior of Nd-Fe-B magnets.  相似文献   

6.
The magnetic microstructures of 2:17 type Sm(Co,Fe,Cu,Zr)z magnets were detected by magnetic force microscopy.Comparing the microstructures of the specimens coated with and without Ta thin film before and after heat-treatment, it is found that: (a) as a protection layer, Ta coating layer about 20 nm thick can effectively restrain Sm volatilization under high temperature;(b) the stress built in the 2:17 type Sm-Co magnets during specimen preparation only affects some local parts of the domain structures;(c) the magnetic microstructures vary largely for specimens heat-treated at high temperature without Ta film coating due to Sm volatilization.In addition, by comparing with high coercivity Fe-Pt point tips, it is found that the Co-Cr thin-film tips are not suitable for detecting the magnetic microstructures of strong permanent magnets.  相似文献   

7.
In order to understand the coercivity mechanism of Sm2(Fe, Mn)17Nx magnet, the structure of amorphous phase found in the crystal phase was clarified using a TEM-tomography. It was found that amorphous phases precipitated as a fine wire in the crystal phase that differs with the phase separation in Sm-Co magnets. It may say that different coercivity mechanism should be proposed in each Sm2(Fe, Mn)17Nx and Sm-Co magnets.  相似文献   

8.
An analytical model to describe the influence of surface degradation and the Ni layer itself on the magnetic properties of Ni coated Nd-Fe-B magnets is presented. Starting from the bulk magnetic properties, the dimensions, the thickness of Ni coating and the affected surface layer, J(H) demagnetization curve is calculated. Subsequently the expected values of (BH)max, and the reversible permeability are deduced from the calculated J(H) curves. For flat magnets the surface effects lead to a decrease of Br and an increase of the permeability which lowers (BH)max. For strait magnets a step in the J(H) curve appears at H = 0. The deteriorating effect of Ni coating and the surface layer scale with the dimensions of magnet and the thickness of these layers, which depend on the processing and the grain size of magnet. These effects can not be neglected if one or more dimensions of a Ni coated magnet are less than about 5 mm. SmCo5 magnets show similar effects but the coercivity of the damaged surface layer is higher. Pinning type Sm2Co17 magnets show almost no deterioration on surface due to machining. As a result, Sm-Co magnets are better suited for applications with dimensions smaller than about 2 mm.  相似文献   

9.
永磁材料长期稳定性研究进展   总被引:5,自引:0,他引:5  
永磁材料的长期稳定性对永磁应用器件的长期可靠使用是极为重要的。本文介绍了永磁材料长期稳定的理论模型的发展和在不同永磁材料中的应用,总结了温度、耐蚀性、镀层防护、永磁体的L/D因素等对烧结钐钴稀土永磁材料短期和长期稳定性的影响,讨论了烧结钕铁硼永磁材料的热稳定性、耐蚀性差的缺点,科技人员近年来所进行的研究和改善的途径,提出解决烧结钕铁硼永磁材料的长期稳定性应用应采取的途径。  相似文献   

10.
We report the fabrication of bulk anisotropic(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets using high-pressure thermal compression(HPTC).The correlations among microstructure,magnetic properties,heating temperature and composition of the HPTC nanocomposite magnets were studied.The HPTC magnet made under variable temperatures(VT),with 19 wt% of FeCo phase,exhibits a maximum energy product of 32 MGOe,which is much higher than that(14 MGOe) for the HPTC magnet made under a constant temperature(CT).When the FeCo content increases to~23 wt%,the HPTC magnet made under VT still remains a high energy product of about 25 MGOe.With increasing NdFeB content,the(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets exhibit an enhanced magnetic anisotropy and coercivity.This work is beneficial to fabricating high-performance and low-cost permanent magnets for practical applications.  相似文献   

11.
Structure and magnetic properties were studied for bulk nanocrystalline Nd-Fe-B permanent magnets that were prepared at 650 °C for 3 min under 300 MPa using the SPS-3.20-MK-V sintering machine and the hot pressed magnets were then submitted to hot deformation with height reduction of 50%,60%,70%,80%,and 85%.Effects of height reduction(HR) and deformation temperature on the structure and magnetic properties of the magnets were investigated.The crystal structure was evaluated by means of X-ray diffraction(XRD) and the microstructure was observed by transmission electron microscopy(TEM).The magnetic properties of the magnets were investigated by vibrating sample magnetometer(VSM).As the height reduction increased,the remanence(B r) of the magnets increased first,peaks at 1.3 T with HR=60%,then decreased again,and the coercivity(H ci) of the magnets decreased monotonically.On the other hand,as the deformation temperature increased,the B r of the magnets increased first,peaks at 1.36 T with HR=60%,then decreased again,and the H ci of the magnets decreased monotonically.Under optimal conditions,the hot deformed magnet possessed excellent magnetic properties as B r =1.36 T,H ci =1143 kA/m,and(BH) max =370 kJ/m 3,suggesting the good potential of the magnets in practical applications.  相似文献   

12.
Rare earth permanent magnets have a wide range of magnetic properties to meet the requirements of an extensive variety of applications. Sintered Sm2Co17-type magnets have the best thermal stability with high magnetic performance at temperatures up to 550 °C. Sintered NdFeB magnets have the highest maximum energy product, (BH)max, but are limited to applications with relatively low operating temperatures. Bonded magnets offer some design flexibility at the expense of magnetic properties. In view of these complexities, it is very important to understand the critical factors when designing the magnetic circuit. Using design examples based on finite element analysis (FEA), we will discuss magnetic materials selection, magnetic circuit design principles and design trade-offs for various applications.  相似文献   

13.
Sintered Sm(CobalFexCu0.1Zr0.03)7.5 (x=0.09-0.21) permanent magnets with higher Fe content were found to have higher remanence Br and maximum energy product (BH)max at room temperature. Br and (BH)max reached maximum of 0.96 T and 176.7 kJ/m3, respectively at room temperature when the Fe content x reached 0.21. However, the intrinsic coercivity Hci at room temperature increased gradually when the Fe content x increased from 0.09 to 0.15, but when x further increased to 0.21, Hci decreased. Hci attained its peak value of 2276.6 kA/m with Fe content x=0.15 at room temperature. For magnets with x=0.15, Br, (BH)max and Hci reached 0.67 T, 81.2 kJ/m3 and 509.4 kA/m at 500℃, respectively, showing good high temperature stability, which could be used in high temperature applications.  相似文献   

14.
钕铁硼是应用最广泛的永磁材料,每年会产生大量达到使用年限的废旧钕铁硼。这些废料中含有20%~30%稀土元素,是宝贵的二次资源。文中以金属铋为提取剂,通过火法熔炼回收废旧钕铁硼中的稀土元素,并利用高温超重力技术将过量的铋分离,用于循环使用。考察了熔炼过程中铋废质量比对稀土提取效率的影响,以及超重力离心过程中温度和重力系数对铋的回收率的影响。结果表明,在铋废质量比大于1∶1时,铋相与铁相分层效果较好,废旧钕铁硼中的稀土元素几乎全部进入铋相中;在较优分离条件:T=500℃、G=1 000下,稀土回收率达99.8%,铋的回收率达72.7%。该工艺的成功开发为废旧钕铁硼中稀土元素回收利用开辟了一条新途径。  相似文献   

15.
采用双合金法制备Nd24.38Ce0.52Gd6.65Febal.TM1.76B0.95(质量分数,%)永磁体,通过扫描电镜及能谱、AMT-4磁测试仪、电子万能力学试验机等手段研究烧结温度对磁体组织和性能的影响.结果表明:随烧结温度从1060℃升高到1100℃,在烧结温度为1080℃时,晶粒均匀且结合致密,富稀土相分布均匀,能获得较好的组织形态;富稀土相中稀土总含量从84.98%增加到98.04%,烧结过程中铈从主相显著扩散到富稀土相;磁体剩磁Br、矫顽力Hcj、磁能积(BH)max 先升后降,在1080℃烧结时获得较好的磁性能,分别为1.22 T、964 kA/m 和293 kJ/m3,同时磁体抗弯强度也达到最大值为257 MPa.  相似文献   

16.
Pr-Dy-Gd-Fe-Co-B magnets with low temperature induction coefficients are studied. It is shown that the temperature induction coefficient of a material can be calculated from its composition in the framework of the molecular-field approximation using a model of five magnetic sublattices. The calculated and experimental data are compared.  相似文献   

17.
固化温度和时间对快淬粘结磁体性能的影响   总被引:6,自引:0,他引:6  
用E20环氧树脂加入固化剂顺丁烯二酸酐制备了快淬(Nd,Pr)FeCoZrB粘结磁体,研究了固化温度和时间对粘结磁体抗压强度和磁性能的影响。随固化温度升高,固化时间增加,粘结磁体的交联反应充分进行,抗压强度明显增加;但由于聚合交联反应生成的水腐蚀磁粉,以及高温固化时磁体空隙中的氧气与磁粉发生了氧化,使磁体磁性能显著降低。  相似文献   

18.
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications, the eutectic Tb80Fe20 (wt%) alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity (Hcj) and thermal stability. The microstructure, magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb80Fe20 contents were studied. The experimental results demonstrate that the coercivity (Hcj) of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe, and the remanence (Br) decreases not obviously by introducing 4 wt% Tb80Fe20 alloy. Meanwhile, the reversible temperature coefficients of coercivity (β) and remanence (α) of the Nd-Fe-B magnets are increased from ?0.5634%/℃ to ?0.4506%/℃ and ?0.1276%/℃ to ?0.1199%/℃ at 20–170 ℃, respectively. The Curie temperature (TC) of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb80Fe20 content. Moreover, the irreversible flux magnetic loss (hirr) is obviously reduced as Tb80Fe20 addition increases. Further analysis of the microstructure reveals that a modified microstructure, i.e. clear and continuous RE-rich grain boundary layer, is acquired in the sintered magnets by introducing Tb80Fe20 alloy. The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.  相似文献   

19.
为开发低成本烧结钕铁硼磁体,用30% Ce替代(Nd0.75Pr0.25)32.69Fe66.25B1.06磁体中的Nd和Pr,研究了磁体在烧结及回火过程中的组织结构和磁学性能变化.结果表明,取向压坯在1030~1080℃烧结2 h后,随烧结温度升高,磁学性能下降,烧结温度为1030℃时综合磁学性能均最好.烧结态Ce替代磁体的综合磁学性能优于未替代磁体.一级回火后,相组成和晶粒尺寸基本不变,边界结构也未发生明显变化,磁体性能基本不变,或有少量下降.二级回火后,晶界明显改善,获得较清晰且平直的晶界,磁体矫顽力均得到大幅提高.Ce替代磁体的剩磁、矫顽力和磁能积均稍低于未替代磁体.  相似文献   

20.
As an organic binder for bonded Nd-Fe-B magnets, epoxy resin(EP) has poor heat resistance but good moisture resistance, while sodium silicate(SS) has poor moisture absorption but better heat resistance and corrosion resistance. In order to improve high temperature stability and decrease moisture absorption of bonded Nd-Fe-B magnets, EP/SS composites were applied as the binder to prepare bonded Nd-Fe-B magnets. The magnetic properties, moisture absorption, corrosion resistance, compressive strength and microstructure of composite bonded magnets were investigated. The results show that EP/SS bonded magnets can obtain excellent magnetic properties at room temperature, and even useable magnetic properties a thigh temperature environments at 200°C. EP/SS composite binder effectively improves heat resistance and corrosion resistance of bonded Nd-Fe-B magnets, and reduces the hygroscopic properties. The molecule of sodium silicateis rigid and keeps it original shape at high temperature environments. In addition, SS in composite binder improves the mobility of the magnetic powders during the pre-pressing process, which makes the magnetic powders attain a more regular structure. These two factors will increase the mechanical properties. Moreover, sodium silicate in the composite binder can also cover the surfaces protecting the magnetic powders from oxidation and corrosion. EP in composite binder can cover SS surface to reduce the water absorption of SS as epoxy is a hydrophobic material. The EDX analysis shows that the composite binder has accumulated in the gaps of the magnet powders, which not only improves heat resistance and corrosion resistance, but also increases the mechanical properties. Therefore, EP/SS composite binder endows bonded Nd-Fe-B magnets excellent comprehensive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号