首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
为研究含能结构材料对多层薄钢靶的超高速毁伤特性,利用二级轻气炮开展了PTFE/Al基和Al基全金属两种含能结构材料超高速撞击多层钢靶的典型毁伤模式研究,得到了材料类型和侵彻速度对毁伤效应的影响。研究结果表明,相比于惰性金属材料,两种含能结构材料对多层薄钢靶均具有明显的靶后横向毁伤增强效应,能够对第二层靶板产生大破孔的毁伤效果,破孔孔径可达弹径的4倍以上。基于AUTODYN数值仿真软件开展了含能结构材料参数有效性验证和含能弹体不同侵彻速度下毁伤效果的数值仿真,结果显示J-C强度模型联合Lee-Tarver三项式点火反应模型和J-C强度模型联合Shock状态方程分别能够较好地描述PTFE/Al基和Al基全金属含能结构材料对多层薄钢靶的破孔毁伤特性。此外,材料释能机制的差异使得提高侵彻速度对提升PTFE/Al基含能结构材料的毁伤效果的作用有限,但能够明显提升Al基全金属含能结构材料对多层钢靶板的毁伤效果。  相似文献   

2.
为了获得采用不同铝(Al)粒径制备而成的聚四氟乙烯/铝(PTFE/Al)活性药型罩作用双层间隔靶的毁伤威力特性,采用模压烧结成型法制备了5种不同Al粒径(10,30,70,200μm,50/70μm)的PTFE/Al活性药型罩,并开展了相应的静爆威力实验.研究结果表明:随着Al粒径从10μm增加到200μm时,活性射流对钢靶和铝靶的破孔面积、等效破裂孔直径、破孔隆起高度以及形成的破坏区域体积均呈现减小趋势,当Al粒径为10μm时破坏钢靶的毁伤参量为SSteel=0.4 CD(装药直径)、hAl=0.48 CD、VSteel=420 cm3,破坏铝靶的毁伤参量为SAl=3.8 CD、hAl=1.72 CD、VAl=2280 cm3.采用50 nm/70μm级配Al粒径的PTFE/Al活性射流对钢靶的穿孔效果显著提高,等效破裂孔直径dSteel=0.59 CD.结合实验相关数据拟合得到了活性射流对后效铝靶的爆裂毁伤效应分析模型.  相似文献   

3.
周杰  何勇  何源  凌琦 《含能材料》2016,24(11):1048-1056
为提高战斗部的毁伤效能,对氟聚物基含能反应材料进行了研究。对氟聚物基含能材料配方改进并制备了一种Φ26mm×60mm的含能毁伤元。将含能毁伤元装入特定结构壳体后进行了冲击引爆模拟战斗部试验。采用高速录像观察含能毁伤元冲击侵彻模拟战斗部后的爆炸情况并测试爆炸后空气冲击波超压。考察了含能毁伤元不同速度下对B炸药和PBX-9404炸药的引燃引爆能力。设置了B炸药模拟战斗部静爆试验作为对比。在试验的基础上,通过测量爆炸后空气冲击波超压进行了TNT当量等效对比分析。试验研究表明,在735m·s~(-1)的侵彻速度下,氟聚物基含能毁伤元可冲击引爆B炸药模拟战斗部。在962m·s~(-1)的侵彻速度下,能引发PBX-9404炸药模拟战斗部爆燃反应。  相似文献   

4.
目前,高速射弹入水冲击效应和活性材料都是水中兵器和高效毁伤技术研究的热点。为验证将二者结合应用于反鱼雷、反水雷、反潜艇等以实现高效毁伤水中目标的设想,对某活性材料进行入水冲击实验,并设计出一种头部带有活性材料的含能杆实验件及水中模拟目标进行入水穿靶实验。实验结果表明,单独的小质量活性材料以及头部含能杆在空气介质下的2倍音速范围内冲击入水时,在侵水过程中活性材料均不产生可观测的释能反应现象;若活性材料在撞水前发生释能反应,侵水过程中也会因压力迅速降低、热量快速流失等原因导致反应难以持续;当含能杆入水后继续侵水并撞击穿透模拟目标壳体后,活性材料在模拟目标内部发生类爆轰反应,产生增强毁伤效果。实验验证了将活性材料复合安装于动能杆头部用于攻击水中目标的可行性,为发展水中高毁伤性兵器提供了研究思路。  相似文献   

5.
多功能含能结构材料研究进展   总被引:3,自引:4,他引:3  
张先锋  赵晓宁 《含能材料》2009,17(6):731-739
多功能含能结构材料是化学能和动能综合利用的用于提高战斗部毁伤效能的新型功能材料.本研究着重介绍了多功能含能结构材料及其应用的国内外研究现状.对多功能含能结构材料作用特性的实验测试方法、作用机理和理论模型进行了简要的评述;阐述了冲击诱发化学反应(shock induced chemical reactions,SICR)方法理论基础和数值仿真方法,并对多功能含能材料的应用现状和前景进行了展望,并给出了近期开展工作的建议.  相似文献   

6.
葛超  曲卓君  王晋  胡蝶  王海福 《兵工学报》2022,43(8):1816-1822
针对典型聚四氟乙烯/铝(PTFE/Al)(质量分数73.5%/26.5%)氟聚物基活性材料,开展不同应变率、不同温度下的准静态、动态压缩实验;基于不同预设剪切带宽度的帽状试样,开展不同应变率下的动态压剪实验。准静态(应变率10-3 s-1)及不同应变率(3×103~7×103 s-1)、不同温度(20℃,100℃,150℃,200℃)条件下的动态压缩实验表明,PTFE/Al活性材料是一种典型的弹塑性材料,具有显著应变硬化、应变率强化和热软化效应。不同宽度(500μm, 300μm, 100μm)预设剪切带帽状试样动态压剪实验表明,剪切带宽度不同导致的局部温升和热效应对材料动态压剪力学响应及材料参数影响显著。  相似文献   

7.
为研究Al粒径对50%:50%质量比的富铝聚四氟乙烯基铝(PTFE/Al)活性材料在中高应变率下的冲击反应行为的影响,采用模压烧结成型法制备了50 nm、10μm、70μm、200μm 4种Al粒径的PTFE/Al活性材料试件.基于分离式霍普金森压杆(SHPB)实验,利用高速摄像机拍摄不同应变率加载下PTFE/Al活性...  相似文献   

8.
为探究铝/聚四氟乙烯(Al/PTFE)活性材料在动态载荷下的力学行为及其点火机理,采用分离式霍普金森压杆对不同成型压力下所制备的Al/PTFE试件进行动态压缩试验。试验结果显示,当应变率为2960~5150 s~(-1)时,Al/PTFE试件在动态加载下呈现出典型的弹塑性力学行为,成型压力为50~150 MPa时,Al/PTFE试件的屈服强度和硬化模量并未表现出应变率效应。成型压力30~80 MPa时,Al/PTFE试件的速度点火阈值随成型压力的增加从28.77 m·s~(-1)缓慢升高到29.22 m·s~(-1),材料的点火延迟时间始终保持在600~700μs。当成型压力达100 MPa时,Al/PTFE试件的速度点火阈值大幅下降至26.60 m·s~(-1),且随着撞击速度的提高,活性材料的点火延迟时间由1000~1100μs降到600~700μs。结合扫描电镜结果可知,成型压力为100~150 MPa时,活性材料内部的局部大尺寸孔洞是材料速度点火阈值下降的重要因素。Al/PTFE活性材料的撞击引发点火特性主要与外部载荷和内部微观形貌有关。  相似文献   

9.
周杰  何勇  何源  王传婷  杨相礼  季铖 《含能材料》2017,25(11):903-912
为了提高铝/聚四氟乙烯/钨(Al/PTFE/W)氟聚物基反应材料的冲击反应毁伤效能,开展了Al/PTFE/W反应材料的准静态压缩实验。分析了W的含量(0%,30%,65%)、Al颗粒粒径(13,45,75μm)以及PTFE颗粒尺寸(25,160μm)对反应材料的准静态力学性能的影响。用准静态密闭反应容器对反应材料进行了冲击释能测试,测得反应材料在750~1200 m·s~(-1)的冲击反应压力、释能持续时间。分析了Al颗粒粒径及PTFE材料粒径对冲击反应释能特性的影响。结果表明,当W的含量为0,30%和65%时,反应材料的失效强度分别为55.6、64.8和22.8 MPa,W的含量变化对屈服强度的影响不大。Al颗粒的尺寸从75μm减小到13μm时,反应材料的失效强度从64.7 MPa提高到83.1 MPa,提高幅度为28.4%。增大PTFE基体材料的粒径也可有效地提高反应材料的失效强度。反应材料的初始反应压力阈值和释放能量持续时间受材料粒径和准静态压缩力学性能的影响。  相似文献   

10.
熊玮  张先锋  陈海华  刘闯  谈梦婷 《兵工学报》2022,43(8):1823-1834
为阐明含能结构材料冲击反应机理,开展以Al/Ni粉末复合材料为代表的含能结构材料冲击反应细观模拟研究。基于Al/Ni粉末复合材料的扫描电镜照片建立细观有限元模型,并结合Mie-Grüneisen状态方程描述Al/Ni粉末复合材料冲击压缩行为。在此基础上,基于反应扩散模型建立考虑多组分固相反应的Al/Ni粉末复合材料冲击反应细观模型,分析细观尺度上物质输运过程、冲击反应演化规律及冲击波传播特性。研究结果表明:Al/Ni粉末复合材料在冲击压缩速度(即粒子速度)为400 m/s时仅发生了微弱的化学反应,且化学反应程度随着冲击压缩速度的增大的加剧;化学反应最初发生于Al-Ni界面处,然后垂直于界面发展;冲击反应将引起材料冲击温度和压力的增高,同时对冲击波的传播起到强化作用。  相似文献   

11.
为研究新型ZrNiAlCuAg亚稳态合金材料的冲击释能特性,采用准密封箱试验系统对含能破片进行了冲击超压试验,研究了材料在不同冲击速度下的超压时程曲线变化规律、超压峰值和超压峰值增长率。对比了新型ZrNiAlCuAg亚稳态合金材料与多种多功能含能结构材料的单位质量能量密度和单位体积能量密度。结果表明材料超压时程曲线呈先急速上升后缓慢下降的特点,其超压峰值、超压峰值增长率均与冲击速度正相关;当冲击速度大于1400 m·s~(-1)时,其反应效率接近40%。低速冲击时,材料的能量密度与其它含能破片相近,冲击速度达到1100 m·s~(-1)时,其能量密度快速上升,并超越其它种类含能破片,当冲击速度为1485 m·s~(-1)时,新型ZrNiAlCuAg亚稳态合金材料的单位质量能量密度达到3.83 kJ·g~(-1),单位体积能量密度达到0.026 kJ·mm~(-3)。  相似文献   

12.
为了研究Al/Mg/CuO活性壳体战斗部的爆炸能量释放特性,通过超高速转镜摄像机以及冲击波超压测试,得到了活性壳体在爆炸加载作用下的破碎过程图像以及不同尺寸样弹在典型距离处的冲击波超压,分析了活性壳体参与爆炸的反应时间、活性材料粒径对冲击波超压的影响,获得了冲击波超压随比例距离的变化规律.结果表明:活性壳体在爆炸加载下能够参与爆炸反应,释放能量时间相对于爆轰反应有微秒级延迟,在比例距离2.52~3.15 m?kg-1/3范围内,提高了冲击波超压,火球持续燃烧时间延长1倍以上.粒径7μm活性材料制成的活性壳体样弹比粒径20μm活性材料制成的样弹冲击波超压提高了13.3%~14.4%,较小粒径的活性材料更容易与爆轰产物反应;与裸装药和铝壳样弹相比,活性壳体样弹的冲击波超压、冲量均有明显提高,在比例距离2.1~8.4 m?kg-1/3范围,冲击波超压提高了6%~32%,冲量提高了13%~38%.  相似文献   

13.
含能破片战斗部毁伤效应研究   总被引:1,自引:2,他引:1  
为提高战斗部的毁伤效能,对含能破片战斗部开展了探索研究,介绍了含能破片战斗部的概念和特点,设计制备了AI/PTFE(聚四氟乙烯)质量比为30∶70配方的含能破片战斗部,对2.5,10,20 mm钢质靶进行侵彻实验,研究了该含能破片对靶板侵彻能力及靶后毁伤效率.试验结果表明:50 mm口径含能破片战斗部穿透了20 mm厚...  相似文献   

14.
为了研究聚四氟乙烯(PTFE)基含能药型罩的动态释能特性及其形成的射流对目标的侵爆毁伤效果,采用静爆试验测量了含能射流与铝射流在准密闭容器中的动态超压,并通过理论计算得到射流释能及释能效率.分析认为,含能射流在成型过程中会发生爆燃反应,相比于铝射流,含能射流超压峰值可提升3~4倍.对于30 g含能药形罩,钨(W)含量为0%~70%时,随着W含量提高,射流释能降低,但药型罩承受爆炸驱动载荷提高,且钨颗粒与活性金属摩擦加剧,射流释能效率提高.对于PTFE/Ti药形罩,在13~30 g范围内,随着药型罩质量增加,射流释能量提高,但侵彻体成型压力降低,射流释能效率下降.  相似文献   

15.
含能材料的损伤本构模型研究进展   总被引:1,自引:1,他引:1  
主要从宏观力学现象和微观统计力学两个角度介绍了国内外含能材料损伤力学模型的发展现状。通过比较各模型的描述观点和应用范围,认为需要建立多尺度分析模型,系统研究各种形式加载条件下含能材料的损伤演化规律及关联性,才能建立更合理的本构模型描述含能材料的力学行为。  相似文献   

16.
高能固体推进剂研究进展   总被引:1,自引:2,他引:1  
罗运军  刘晶如 《含能材料》2007,15(4):407-410
综述了高能固体推进剂的研究进展,提出了新型含能粘合剂、高能量密度材料、含能增塑剂以及新型燃料添加剂的研究应用是提高固体推进剂能量水平的最重要的技术途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号