首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nd-Fe-B/α-Fe nanocomposite magnets with high magnetic properties were successfully fabricated through a sonochemical process with carbonyl iron as Fe precursor and subsequently SPS. Experimental results show that α-Fe can increase the remanence of Nd-Fe-B/α-Fe nanocomposite magnets while decrease the coercivity. The demagnetizing curve indicates that the hard and the soft phases did not coupled very well, even though the remanence was improved. The magnetic properties of Br 8.61 kGs, Hcj 8.59 kOe and (BH)max 12.05 MGOe were obtained for Nd-Fe-B/α-Fe nanocomposite magnets with the nominal Fe content of 5 wt.%. It is noted, the exchange coupling was obviously enhanced by a MA process before SPS, and the magnets properties were increased to Br 9.42 kGs and (BH)max 14.27 MGOe for Nd-Fe-B/α-Fe nanocomposite magnets with the same Fe content.  相似文献   

2.
In the present work, anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets were prepared with different Nd-Fe-B contents. It is found that the particle distributions and ratios between the two magnetic phases have important roles in the magnetic properties, microstructures and thermal stability of the magnets. With increase of Nd-Fe-B content, the saturation magnetization of the anisotropic hybrid magnet increases significantly, however, coercivity decreases, and the demagnetization curves show magnetically single-phase behavior. The anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets exhibit a maximum energy product and remanence of 14.15 MGOe and 99.53 A·m~2/kg, respectively, when the NdFe-B content is 70 wt% at room temperature. Furthermore, the hybrid magnets also have better thermal stability at elevated temperatures due to the interaction between the two magnetic particles.  相似文献   

3.
In this article,the Sm2Co7/α-Fe nanocomposite magnets were prepared by high energy ball milling and spark plasma sintering method.The effect of soft phase content on the magnetic properties was studied.Up to 30 wt% α-Fe was added into Sm2Co7 matrix without the decrease of remanence.Optimal energy product(BH)max of 9.2 MGOe was obtained with 20 wt% α-Fe.TEM observation shows that the grain size of α-Fe is 20-50 nm which ensures a good coupling effect between soft and hard phase.One more thing needs to be mentioned is that there exists inter-diffusion between Sm-Co phase and α-Fe phase.Moreover,our results can also illustrate that the Sm2Co7/α-Fe nanocomposite magnets are able to acquire better magnetic properties than the SmCo5/α-Fe magnets prepared by the same process due to the large domain width of Sm2Co7 phase.  相似文献   

4.
Anisotropic Nd-Fe-B magnets were fabricated by the single stage hot deformation (SSHD) method. The magnetic properties of the anisotropic Nd-Fe-B magnets are as follows: the maximum energy product is 234.7 kJ·m-3, remanence 1.16 T and coercivity 684.3 kA·m-1. A study of the relationship between microstructure and magnetic properties for the anisotropic Nd-Fe-B magnets was carried out. The results show that the grains of Nd2Fe14B have grown up preferentially along the direction perpendicular to the pressing direction.  相似文献   

5.
This work studied the application of the different magnetic field used in the compaction process for die fabrication of anisotropic Nd-Fe-B bonded magnet. The static field made from Nd-Fe-B permanent magnets was used in the blending process to separate the particles each other. The SEM observation gave intuitionistic results about it. The anisotropic Nd-Fe-B bonded magnets were fabricated with warm-compaction under the electromagnetic field about 2.5 T. It is known that magnetic field is necessary for anisotropic materials fabrication for alignment. And warm compaction was used to decrease the viscousness of binder, to enhance alignment magnetic particle while press, and to get high density materials. For coercivity of Nd-Fe-B magnets decrease largely with the temperature increasing, press in proper temperature and oriented field is benefit to the magnetic characteristics and the mechanical properties of the anisotropic bonded Nd-Fe-B magnets. Finally solidifying process was performed under the pulse field of 4 T. The increment for solidifying in the field was about 15% for maximum energy product of the bonded magnet. The magnetic properties of anisotropic bonded Nd-Fe-B magnets from d-HDDR powders compact at 90 °C in alignment field of 2.5 T were: Br=8.55 kGs, iHc=12.0 kOe, (BH)max=14.57 MGOe.  相似文献   

6.
A reduction and diffusion method (R/D) is used to make a mother alloy of Sm-Fe-N anisotropic magnets. Reduction of 0.5wt% of samarium content compared to the conventional powder increases magnetization. Milling condition and surface treatment improve the squareness of demagnetization curve, the aging property and the heat resistance. The maximum energy product of 292 kJ/m3 is obtained with the powder. High coercive force is maintainable even if the powder is exposed for 300h in 80 °C 90%RH. The maximum energy product of 141 kJ/m3 is obtained with an injection molded anisotropic magnet. The aging property estimated by irreversible flux loss is comparable to the conventional MQP-B magnets. The heat resistance temperature (T−5%) at which die initial irreversible flux loss becomes −5% is 125-more than 150 °C for Sm-Fe-N magnets and 150–170 °C for hybrid magnets. The magnetic properties of bonded HDDR Nd-Fe-B magnet were improved by substituting for Nd-Fe-B powder with Sm-Fe-N powder. A new technology to make anisotropic bonded Sm-Fe-N thin cylinder magnets by an injection molding using unsaturated polyester (UP) resin was developed.  相似文献   

7.
Nanostructured anisotropic Nd-Fe-B/Fe(C) composite powders were prepared by coating Fe(C) softmagnetic nanoparticles on HDDR Nd-Fe-B hard magnetic powders using iron pentacarbonyl Fe(CO)_5 as soft-phase precursor.The effect of Fe(CO)_5-loading amount on soft-phase purity,coating morphology and magnetic properties of the composite powders was investigated.Dense and continuous Fe(C) softphase coatings with average particle sizes of 58-68 nm are obtained at Fe(CO)_5 loading amounts of x 12 wt%,leading to enhanced remanence and improved energy product of the coated powders.Positive value in δM-plots and single-phase-like demagnetization curves are observed in the Nd-Fe-B/Fe(C) composite powders,indicating the exchange coupling effect between the coated Fe(C) soft phases and the Nd-Fe-B hard phase.  相似文献   

8.
Some progress of research on bonded Nd-Fe-B magnets in National University of Defense Technology(NUDT) is presented in this paper. The contents include B-rich R2Fe14B-based nano composite with good performance; a model to determine of the least amount of binder; resin for high temperature application; resin encapsulating magnetic powders for long-term storage; thermoplastic polymer used for mold-pressing magnets; hybrid bonded Nd-Fe-B/Sm2Co17 magnet with a potentially useful improvements in remanence and magnetic energy product.  相似文献   

9.
Innovative and cost-effective technology for synthesizing bulk anisotropic nanograin composite rare earth magnets has been developed. Using a powder blending technique, (BH)max of nanograin composite magnets can reach 40 to 50 MGOe, while applying powder coating techniques, (BH)max = 45–55 MGOe were achieved. Thus, principal technical difficulties in synthesizing bulk anisotropic nanograin composite magnets are successfully overcome. In addition, it was observed that the magnetically soft phase in a composite magnet could be up to tens of micrometers, or more than 1000 times larger than the upper size limit predicted by the current models of interface exchange coupling, which indicates that further reducing the size of the soft phase and improving its distribution will significantly improve the magnetic performance of nanograin composite magnets.  相似文献   

10.
Crystallization and magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets have been investigated by annealing the as-spun ribbons with magnetic field. The crystallization process was accelerated by field annealing. The hysteresis loop became to be fat by magnetic annealing at 645 °C for 4 min, which was 690 °C for ribbons annealing without magnetic field. The relative content of α-Fe phase was increased from the results of XRD. The strength of the magnetic field had no obvious influence on the remanence and coercivity, but modified the squareness of hysteresis loop.  相似文献   

11.
Maximumenergyproduct (BH) maxisakeychar acteristicofapermanentmagnet (PM ) .Theoptimal(BH) maxislimitedbythevalueofJr2 / 4 μ0 (Jrrema nence)correspondingtoanidealrectangularhysteresisloopwhencoercivityμ0 HcisatleastlargerthanJr/ 2 .FormostrareearthPM ,thecoercivityisfarlargerthantheremanence[1,2 ] .Thus ,remanenceenhance mentbecomesanimportantroleindeveloping(BH) max.Sincehighremanencewasfoundinisotrop icnanostructuredPM ,muchefforthasbeenpaidtoachievehighperformancePM[3,4 ] .Thehigh…  相似文献   

12.
This study is on the injection molding process for the fabricating anisotropic Nd-Fe-B bonded magnets. The effects of powder loading, particle size of the magnetic powder, polymer binder and the fabricating process on the magnetic and the mechanical properties of anisotropic Nd-Fe-B magnets were investigated. The proper powder loading, particle size and binder are 60%(vol%), 75–106 μm and PA 1010, respectively. The optimum condition for good magnetic properties of anisotropic injection bonded Nd-Fe-B magnets is mixing the binder and the chemicals in the temperature between 205–215 °C, injection temperature of 265 °C, the injection pressure of 5–6 MPa, the press time of 5 second, and molding temperature of 80 °C. The magnetic properties of anisotropic bonded Nd-Fe-B magnets made in above conditions from d-HDDR powder were: Br=0.72 T, iHc=983 kA/m, (BH)max=75 kJ/mc.  相似文献   

13.
High-performance α-Fe/Pr2Fe14B-type nanocomposite magnets based on the compositions of Pr8Fe86B6 microalloyed with Co, Nb and C were fabricated by direct melt spinning. The coercivity was greatly improved from 5.5 kOe for the Pr8Fe86B6 ribbons to 7.4 kOe for the Pr8Fe85NbB5C ribbons. The balanced high coercivity and remanence were obtained in Pr8Fe75Co10NbB5C ribbons due to the Co substitution for Fe, which led to the significant improvement of magnetic properties in these ribbons. A remanence ratio of 0.82, a coercive field of 6.6 kOe and a maximum energy product of 26.2 MGOe in melt-spun Pr8Fe75Co10NbB5C ribbons were obtained at room temperature.  相似文献   

14.
The influence of Ce-Co alloy addition and sintering holding time on permanent magnetic properties and micro structure of nanocrystalline Nd-Fe-B bulk alloy were investigated.The coercivity of Nd-Fe-B bulk alloy can be enhanced greatly by more than 100% after adding Ce-Co powders.However,when the concentration of Ce-Co is up to 30 wt%,the density of the magnet can reach the maximum value of 7.58 g/cm~3,but the coercivity does not increase significantly.On the other hand,with the increase of holding time to 10 min,the density and coercivity of magnets increase gradually,reaching up to 7.55 g/cm~3 and 1134.3 kA/m,respectively.After the addition of Ce-Co alloy,Ce-Co may easily diffuse into the Nd-Fe-B matrix during hot-pressing and under the high pressure and temperature,thus increasing the content of grain boundary phase and the pinning effect of grain boundary,which leads to the increase of coercivity.The extension of the hot-pressing holding time may be more conducive to the diffusion of CeCo into the Nd-Fe-B matrix.In addition,the effect of Ce-Co addition on the magnetic properties of Nd-FeB with different content of rare earth was also studied.The addition of Ce-Co can effectively increase the coercivity of nanocomposite Nd_2 Fe_(14)B/α-Fe magnets.The addition of Nb to the parent alloy can further improve the coercivity.For Nd_(11)Fe_(81.5)Nb_1 Ga_(0.5)B_6 alloy with 10 wt% Ce-Co addition,the coercivity can increase from 740.28 to 1098.48 kA/m.  相似文献   

15.
为提高热压结合热变形工艺制备的各向异性Nd-Fe-B磁体的力学性能,向磁体中掺杂高熔点、弱磁性金属元素Ni,研究Ni含量对磁体的磁性能、力学性能以及微观结构的影响。掺杂Ni的质量分数在0~5%之间时,Nd-Fe-B复合磁体的抗弯强度先增大后减小,2%Ni含量的Nd-Fe-B复合磁体具有最高平均抗弯强度212 MPa,其最大磁能积保持在40 MGOe以上。从磁体断口形貌上看,Ni会在孔洞附近富集,强化增韧晶界相,从而提高晶界相的裂纹扩展阻力,使抗弯强度提高。  相似文献   

16.
The effect of wheel speed on phase formation and magnetic properties of (Nd0.4La0.6)15Fe77.5B7.5 and (Nd0.4La0.6)13.4Fe79.9B6.7 ribbons prepared by melt-spinning method was investigated experimentally. Based on X-ray diffraction results, all melt-spun ribbons consist of the main phase with the tetragonal 2:14:1 type structure and the minor α-Fe phase. Magnetic measurements show the maximum magnetic energy product ((BH)max) and the remanence (Mr) increases firstly and then decreases with the increase of wheel speed, while the coercivity (Hci) increases, resulting from the variation of the average volume fraction of the α-Fe phase and the average grain size in the melt-spun ribbons. Using Henkel plots, the interaction between the 2:14:1 phase and the α-Fe phase in the melt-spun ribbons was analyzed and the intergranular exchange coupling is manifested. Optimal magnetic properties of Hci = 7.27 kOe, Mr = 90.94 emu/g and (BH)max = 12.10 MGOe are achieved in the (Nd0.4La0.6)15Fe77.5B7.5 ribbon with the wheel speed of 26 m/s. It indicates that magnetic properties of Nd-Fe-B melt-spun ribbons with highly abundant rare earth element La can be improved by optimizing alloy composition and preparation process.  相似文献   

17.
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications, the eutectic Tb80Fe20 (wt%) alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity (Hcj) and thermal stability. The microstructure, magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb80Fe20 contents were studied. The experimental results demonstrate that the coercivity (Hcj) of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe, and the remanence (Br) decreases not obviously by introducing 4 wt% Tb80Fe20 alloy. Meanwhile, the reversible temperature coefficients of coercivity (β) and remanence (α) of the Nd-Fe-B magnets are increased from ?0.5634%/℃ to ?0.4506%/℃ and ?0.1276%/℃ to ?0.1199%/℃ at 20–170 ℃, respectively. The Curie temperature (TC) of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb80Fe20 content. Moreover, the irreversible flux magnetic loss (hirr) is obviously reduced as Tb80Fe20 addition increases. Further analysis of the microstructure reveals that a modified microstructure, i.e. clear and continuous RE-rich grain boundary layer, is acquired in the sintered magnets by introducing Tb80Fe20 alloy. The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.  相似文献   

18.
By intergranular addition of Pr-Cu-Ti alloy powders in the Nd-Fe-B sintered magnets with the normal B component, we propose an approach to the optimization of grain boundary and local Nd-Fe-B composition system. The coercivity is enhanced from 1.42 to 1.86 T, while further addition leads to a reduction in remanence and coercivity. The analyses of phase composition reveal that Ti mainly exists in the form of metallic Ti alloy, and part of Ti combines with B to form the TiB2 phase after the liquid phase sintering process. This process results in a consumption of B in the local Nd-Fe-B composition system and a change of the grain boundary component, which contributes to the formation process of the RE6(Fe,M)14 phase after the annealing process. Therefore, with the modification of grain boundary and composition system, the intergranular addition of Pr-Cu-Ti induces the generation of continuous thin grain boundary phases. It promotes the intergrain exchange decoupling, increasing the coercivity in the annealed magnet. While the excess addition results in the segregation of TiB2, as well as the precipitation of TiB2 into the Nd-Fe-B phase, which leads to structural defects. Thus, the further effort for the addition alloy with Ti to reduce the deterioration of the microstructure will lead to further improvement in magnetic properties.  相似文献   

19.
Nd-Fe-B permanent magnets with a small amount of Al nano-particles doping were prepared by conventional sintered method. Effect of Al content on magnetic property, corrosion resistance and oxidation properties of the magnets were studied. Investigation showed that the coercivity rose gradually, while the remanence decreased simultaneously with increase of Al doping amount. Further investigation revealed that most Al element diffused into the main phase and some Al element diffused into the Nd-rich phase. The autoclave test results showed that the corrosion rate of the magnets decreased with Al content increasing. After oxidation, the maximum energy product losses of the magnets with 0.0 wt.% and 0.2 wt.% Al nano-particles doping were 6.13% and 3.99%, respectively. Therefore, Al nano-particles doping was a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnet.  相似文献   

20.
We report the fabrication of bulk anisotropic(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets using high-pressure thermal compression(HPTC).The correlations among microstructure,magnetic properties,heating temperature and composition of the HPTC nanocomposite magnets were studied.The HPTC magnet made under variable temperatures(VT),with 19 wt% of FeCo phase,exhibits a maximum energy product of 32 MGOe,which is much higher than that(14 MGOe) for the HPTC magnet made under a constant temperature(CT).When the FeCo content increases to~23 wt%,the HPTC magnet made under VT still remains a high energy product of about 25 MGOe.With increasing NdFeB content,the(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets exhibit an enhanced magnetic anisotropy and coercivity.This work is beneficial to fabricating high-performance and low-cost permanent magnets for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号