首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanosine 3',5'-cyclic phosphate (cGMP) is known to be the second messenger of natriuretic peptides and nitric oxide (NO). To investigate the involvement of natriuretic peptides in the regulation of the feto-placental circulation, specific radioimmunoassays were used to measure the concentrations of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and cGMP in the umbilical venous plasma of normal and asphyxiated newborns. The plasma concentrations of ANP, BNP and cGMP in asphyxiated newborns were 48.3 +/- 12.9 pm, 24.5 +/- 9.4 pm and 4.4 +/- 1.6 nM (mean +/- s.e.m., n = 10), respectively. These values were significantly higher than those in the normal newborns (17.4 +/- 1.9 pm, 4.7 +/- 1.0 pm, and 0.78 +/- 0.14 nM, respectively). Moreover, the expression of both ANP-A and ANP-B receptor, biologically active receptors for natriuretic peptides, was detected in term human placenta by Northern bolt analysis. The expression of natriuretic peptide receptors was further confirmed by binding assay using [125I]-labelled ANP and solubilized crude membrane preparations of placental tissue. These findings suggest that cGMP is produced in the placenta, at least partly, by the action of ANP and BNP secreted from fetal heart, in pathophysiological conditions such as fetal hypoxia.  相似文献   

2.
3.
Systemic clearance of atrial natriuretic peptide (ANP) is in part due to neutral endopeptidase (NEP) proteolysis and natriuretic peptide receptor-C (NPR-C) mediated endocytosis. Biological responses to ANP are primarily mediated by the membrane guanylyl cyclase-A/natriuretic peptide receptor-A (NPR-A). Analogs of ANP selective for NPR-A and/or resistant to NEP may have increased activity in those tissues where NPR-C and NEP are coexpressed with NPR-A. The analog of ANP termed vANP; [(R3D, G9T, R11S, M12L, G16R)ANP] is selective for human NPR-A with at least 10,000 fold reduction in affinity for human NPR-C. We report that rat NPR-A is insensitive to 10 nM vANP, demonstrating the limitations of this species in evaluating human therapeutic candidates. As an alternative approach we tested the binding and potency of receptor-selective and NEP-resistant ANP analogs in rhesus monkey tissues. Competition binding studies with a simplified version of vANP, sANP [(G9T, R11S, G16R)rANP], in rhesus monkey kidney and lung membrane preparations shows displacement of 125I-ANP from only a fraction of the total ANP receptor population, 30 and 85%, respectively. The remaining ANP binding sites can be occupied with the NPR-C selective ligand cANP(4-23). These data strongly suggest that only two classes of ANP receptor are present in these membrane preparations, NPR-A and NPR-C. The NEP resistant sANP derivative called sANP(TAPR) was 8 fold more potent (ED50 = 0.6 nM) than rANP (ED50 = 5 nM) in stimulating cGMP production in the lung membrane preparation. Our results demonstrate that the rhesus monkey natriuretic peptide receptors reflect the pharmacology of the human receptors, and that this species may be suitable to determine the role of NPR-C and NEP in peptide clearance and attenuating functional responses.  相似文献   

4.
5.
We investigated the effects of cyclic guanosine 3',5'-monophosphate (cGMP) on type 2 iodothyronine deiodinase (D2) in cultured rat glial cells. Rat glial cells were cultured in Dulbecco's modified Eagle's medium supplemented with 15% fetal bovine serum. When cells were cultured in the presence of 8-bromo cGMP (8-Br cGMP), an analogue of cGMP, D2 activity was increased in a time- and concentration-dependent manner. Lineweaver-Burk plots revealed that the stimulation of D2 activity by 8-Br cGMP (10(-3) M) was associated with fivefold increase in maximum velocity but without a significant change in Michaelis-Menten constant, suggesting that cGMP increases D2 activity via new enzyme synthesis. Both atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are well known to increase the intracellular cGMP level via their guanylate cyclase-linked receptors in rat glial cells. In the present study, ANP (10(-6) M) and CNP (10(-6) M) significantly increased the D2 activity in rat glial cells (1.9-fold [ANP] or 2.3-fold [CNP] compared with control activity, respectively). Northern blot analysis demonstrated that D2 mRNA level increased in the presence of 8-Br cGMP (10(-3) M), and reached a plateau (six-fold) after 4 hours of incubation. The increment of D2 mRNA level by 8-Br cGMP was comparable with the increase of the D2 activity by this agent. Our data suggest that cGMP induces rat D2 activity, at least in part, at the pretranslational level, and that ANP and CNP increase D2 activity most likely via their guanylate cyclase-linked receptors in rat glial cells.  相似文献   

6.
OBJECTIVE: While natriuretic peptides can inhibit growth of vascular muscle cells (VSMC), controversy exists as to whether this effect is mediated via the guanylate cyclase-coupled receptors, NPR-A and NPR-B, or the clearance receptor, NPR-C. The original aim of this study was to examine the mechanism by which the NPR-C receptor regulates growth. METHODS: Rat VSMC were characterized with regard to natriuretic peptide receptor expression by RT/PCR and radioligand binding studies. The effect on growth following addition of the peptides and the ligands for NPR-C was measured by [3H]thymidine incorporation. Cyclic guanosine monophosphate (cGMP) levels were determined by radioimmunoassay and mitogen activating protein kinase activity was based on the phosphorylation of myelin basic protein. RESULTS: In rat VSMC, passages 4-12, both atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) dose-dependently inhibited serum and PDGF-induced VSMC growth. In contrast, NPR-C specific ligands alone had no effect on cell growth but enhanced growth inhibition when co-administered with ANP and CNP. ANP and CNP also decreased PDGF-BB-stimulated MAP kinase activity. Once again, NPR-C specific ligands alone had no effect but enhanced the effects of ANP. Furthermore, a cGMP specific phosphodiesterase inhibitor dose-dependently inhibited VSMC growth and markedly enhanced natriuretic-peptide-induced inhibition at low peptide concentrations. To examine a potential mechanism for the controversy concerning the NPR-C, we investigated the autocrine expression of ANP and CNP by VSMC and found that mRNA encoding both peptides could be detected by RT/PCR. CONCLUSION: Our findings indicate that the guanyl-cyclase-linked receptors mediate the antiproliferative actions of the natriuretic peptides on vascular smooth muscle cell growth. Moreover, we hypothesize that the apparent inhibition of growth by NPR-C specific ligands reported by others may be due to stabilization of natriuretic peptides produced by the cultured VSMC and subsequent action of these peptides at guanyl-cyclase-linked receptors.  相似文献   

7.
Atrial natriuretic peptide (ANP) stimulates aqueous humor formation in primates, but the membrane-bound receptors which mediate this effect have not been well studied in the eye. Endocytosis of [125I]ANP bound to natriuretic peptide C receptors was characterized in fetal human nonpigmented ciliary epithelial (NPE) cells. [125I]ANP which bound to cells at 4 degreesC was detected in the cell interior after a temperature shift to 37 degreesC. Appearance of ligand within the cell peaked at 5 min, and then declined towards zero over 20 min. The endocytosis inhibitor phenylarsine oxide blocked the appearance of internalized ligand, whereas the lysosomotropic drug chloroquine had no effect on internalization but blocked subsequent loss of internalized ligand. Chloroquine also blocked the accumulation of degraded ligand in the extracellular medium. Treatment with phorbol 12-myristate, 13-acetate accelerated the loss of internalized ligand from cells and increased the accumulation of ligand in the extracellular medium. Ligand in the medium was also increased by dioctanoylglycerol but not by 4alpha phorbol didecanoate, an isomer which does not activate protein kinase C. The protein kinase inhibitors staurosporine and bisindolylymaleimide blocked the increase in ligand. Phorbol ester-stimulated loss of internalized ligand occurred in the presence of chloroquine. TCA precipitation of ligand in the extracellular medium showed that both degraded and undegraded [125I]ANP were present. However, in the presence of chloroquine only, undegraded ANP was detected in the medium, and phorbol esters stimulated its rate of appearance by approximately 2 fold. A similar stimulation occurred when cells containing internalized ligand, but stripped of membrane-bound ligand, were exposed to phorbol esters. The data suggest that ANP bound to natriuretic peptide C receptors on NPE cells is endocytosed, and that protein kinase C activates a non-lysosomal pathway for ANP retroendocytosis in these cells.  相似文献   

8.
We report the production of a novel human natriuretic peptide receptor/guanylyl cyclase A (hNPR-A)-selective agonist ANP [G9T, R11S, G16R] (sANP). This agonist has similar affinity to ANP for hNPR-A and 1,000-10,000-fold reduced affinity for the human natriuretic peptide clearance receptor (hNPR-C). sANP was used to directly test the hypothesis that hNPR-A mediates the inhibitory effect of natriuretic peptides on aldosterone generation in a human zona glomerulosa cell line, H295R. Human type A natriuretic peptide and sANP (10(-11) to 10(-6) M) resulted in concentration-dependent increases in cGMP levels and decreases in forskolin (100 nM)- and angiotensin II (5 nM)-induced aldosterone and pregnenolone production. These results revealed an inhibitory effect of both peptides on the agonist-stimulated conversion of cholesterol to pregnenolone (i.e., cytochrome P-450 cholesterol monooxygenase side-chain cleaving enzyme, EC 1.14.15.6). H295R cells also exhibited angiotensin II- and forskolin-evoked conversion of [3H]cortico-sterone to [3H]aldosterone (i.e., cytochrome P-450 steroid 11 beta-monooxygenase/aldosterone synthase, EC 1.14.15.4). Human type A natriuretic peptide and sANP (10(-7) M) inhibited the angiotensin II-stimulated late pathway but did not affect forskolin-facilitated conversion of corticosterone to aldosterone. Our results directly demonstrate inhibitory effects of hNPR-A-mediated signal transduction on cytochrome P-450 cholesterol monooxygenase side-chain cleaving enzyme and steroid 11 beta-monooxygenase/aldosterone synthase complex depending on the steroidogenic agonist used.  相似文献   

9.
10.
The receptor for atrial natriuretic peptide (ANP) is a type-I transmembrane protein containing an extracellular ligand-binding domain, a single transmembrane sequence, an intracellular kinase-homologous domain, and a guanylate cyclase (GCase) domain. Binding of ANP to the extracellular domain causes activation of the GCase domain by an as yet unknown mechanism. To facilitate studies of the receptor structure and signaling mechanism, we have expressed the extracellular ANP-binding domain of rat ANP receptor (NPR-ECD) in a water-soluble form. NPR-ECD was purified to homogeneity by ANP-affinity chromatography. SDS-PAGE gave a single 61-kDa band, which coincided with a radioactive band obtained by photoaffinity-labeling with N4alpha-azidobenzoyl-125I-ANP(4-28). Edman degradation gave a single amino-terminal sequence expected for the mature protein. Both trifluoromethanesulfonic acid and peptide-N-glycosidase F treatments yielded a 50-kDa band, indicating N-glycosylation. The molecular mass of 57 725 Da determined by mass spectrometry indicates the carbohydrate content at 16%. NPR-ECD bound ANP with an affinity comparable to that of the full-length receptor. The ligand selectivity of NPR-ECD (in the order ANP > brain natriuretic peptide > C-type natriuretic peptide) was also similar to that of the full-length receptor. HPLC gel filtration of NPR-ECD gave a peak with an apparent mass of 74 kDa. Preincubation with ANP generated a new 150-kDa peak with a concomitant decrease of the 74-kDa peak. This shift in peak positions was ANP concentration-dependent and was complete at the NPR-ECD-to-ANP molar ratio of 1:1, indicating equimolar binding. The change in the apparent native molecular weight from 74 to 150 kDa suggests that binding causes dimerization of the NPR-ECD:ANP complex to yield an [NPR-ECD:ANP]2 complex.  相似文献   

11.
Previous studies have shown that the diuretic hormone atrial natriuretic peptide (ANP) also regulates the steroidogenic responsiveness in isolated Leydig cells from mouse and rat testes. In the present study, we examined the distribution of specific receptors for ANP and C-type natriuretic peptide (CNP) in the testicular compartments of 12-week-old Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). We used an in vitro autoradiographic procedure on slide-mounted frozen testicular sections to localize the receptors of the natriuretic peptide hormone family using 125I-ANP and 125I-CNP as radioligands. A high level of specific 125I-ANP binding sites was localized largely in the Leydig cells of the interstitial compartment; other testicular cells were not significantly labeled. On the other hand, no significant difference was observed in 125I-CNP binding sites in the testicular cells of SHR and WKY. Semiquantitative analysis of the binding sites indicated that the density of 125I-ANP receptor binding in Leydig cells of WKY testis was ninefold higher than in those of SHR testis. A moderate level of 125I-ANP binding was also observed in seminiferous tubules, particularly in the spermatids of both SHR and WKY. 125I-ANP binding in WKY spermatids was approximately 2.5-fold higher than in SHR spermatids. Northern blot analysis showed that mRNA specific for guanylyl cyclase type A (Npra) was expressed at approximately twofold higher levels in WKY than in SHR testis. ANP (1 x 10(-8) mol/L) stimulated fourfold to fivefold increased levels of testosterone production in isolated Leydig cells from normotensive WKY compared with those from SHR. These findings support a new physiological role of ANP in Leydig cells, in which a functional relationship seems to exist between testicular ANP receptor expression and testosterone production and the state of hypertension in SHR.  相似文献   

12.
Development of the mammary gland during puberty, pregnancy, and lactation is controlled by steroid and peptide hormones and growth factors. To determine the role of the insulin-like growth factors (IGFs) in this process we developed a transgenic model using the whey acidic protein (WAP) gene to direct expression of rat IGF-I and human IGF binding protein-3 (IGFBP-3) to mammary tissue during late pregnancy and throughout lactation. High levels of expression of transgenic IGF-I and IGFBP-3 were seen in lobular-alveolar cells by in situ hybridization. There was no obvious effect on mammary development during pregnancy and lactation; indeed, mothers were capable of nursing their pups normally and the only structural difference seen in the mammary glands at peak lactation was an overall smaller size of the alveoli. We also evaluated the role of IGF-I and IGFBP-3 in the remodeling of mammary tissue during involution. Compared with control animals, the process of involution was modified in both transgenic lines. The degree of apoptotic cells was lower in the WAP-IGF-I and WAP-BP-3 expressing mice. In addition, there was a more quiescent pattern of involution with residual lobular secretary ability and a muted host inflammatory reaction with fewer lumenal microcalcifications. These results demonstrate that IGF-I and IGFBP-3 may modulate the involutionary process of the lactating mammary gland.  相似文献   

13.
Tyr(O)CNP is an analogue of C-type natriuretic peptide (CNP) with a tyrosine residue added to the NH2 terminus to allow its iodination. In the present study, the suitability of iodinated Tyr(O)CNP as a ligand was tested, and its potency was compared with that of other natural rat natriuretic peptides or structural analogues by radioligand binding experiments. Binding studies were performed on membranes of COS-1 cells transfected with expression plasmids for either rat natriuretic peptide receptor (NPR)-A, rat NPR-B, or bovine NPR-C. 125I-ANP(99-126) was used as a ligand to assess the binding characteristics of NPR-A and -C, and 125I-Tyr(O)CNP was used to study NPR-B. Binding associated to membranes of nontransfected COS cells was always < 3% of the total binding observed in membranes from cells transfected with receptor expression plasmids. Receptor densities in transfected cells ranged from 500 to 2500 fmol/mg of protein. High performance liquid chromatography and ionspray mass spectrometry analyses revealed that the reagents used in the course of iodination (lactoperoxidase, chloramine T, or N-chloromorpholine altered the structure of Tyr(O)CNP, most likely by changing the thiol of the Met17 residue into a sulfoxide. To further evaluate the usefulness of forms of iodinated Tyr(O)CNP on the cGMP responses in cells transfected with NPR-B. In conclusion, the suitability iodinated forms of Tyr(O)CNP as radioligands, we performed iodination of the peptide with cold iodine (Na-127I-). After purification by high performance liquid chromatography, three different modified peptides (i.e. Tyr(O)Met(O)17CNP, 127I-Tyr(O)Met(O)17CNP, and 127I2-Tyr(O)Met(O)17CNP) were recovered, and they were compared with CNP-22, Tyr(O)CNP, ANP(99-126), BNP-32, and des[Gin18, Ser19, Gly20, Leu21, Gly22]ANP(4-23) NH2 (c-ANP) for their ability to bind to transfected receptors. The binding affinity of Tyr(O)CNP for NPR-A and -B receptors is similar to that of CNP. However, oxidation of the Met17 residue into methionine sulfoxide reduces the affinity of the compound for NPR-B by > 10-fold, whereas the addition of one or two iodines did not further reduce its affinity. Similar results were obtained on evaluation of the ability of the oxidized form of monoiodinated Tyr(O)CNP on the cGMP responses in cells transfected with NPR-B. In conclusion, the suitability of iodinated forms of Tyr(O)CNP as radioligands for binding studies on rat NPR-B is not optimal, and the results of studies using such compounds for the detection, identification, and quantification of this receptor should be interpreted with caution.  相似文献   

14.
The aim of this study was to characterize and compare the effect of atrial natriuretic peptide (ANP) on ileal transport function in two common laboratory animals, the Hooded-Lister rat and the New Zealand White rabbit. ANP 1 microM produced a maximal increase in short circuit current (Isc) that was Cl- dependent in both rat and rabbit. The maximal response in rat tissue was twice the magnitude of that seen in the rabbit. Furthermore, the rabbit Isc response was rapid and transient compared with that of the rat. In both rats and rabbits, the ANP response was dependent on extracellular Ca++. Neural blockade had no effect on the rat ANP response but significantly inhibited the ANP response in rabbits. In the rat, the effect of ANP is mediated by seratonin (5-HT) acting through 5-HT2 receptors. In contrast, no role for 5-HT could be seen in the rabbit ileal ANP response. In intact tissue in both rat and rabbit, ANP stimulated a significant rise in cGMP levels. ANP had no effect on cAMP levels in either species. The findings suggest a separate and distinct mechanism for ANP-mediated intestinal Cl- secretion in the rat ileum compared with the rabbit.  相似文献   

15.
The aim of our studies was to investigate hormonal prevention of hepatic preservation damage by the atrial natriuretic peptide (ANP) and the mechanisms involved. Isolated perfusion of rat livers was performed in a nonrecirculating fashion. Twenty minutes of preischemic perfusion was performed with or without different concentrations of ANP, followed by 24-hour storage in cold University of Wisconsin (UW) solution. Two hundred nanomoles of ANP prevented hepatocellular damage during a 2-hour reperfusion period as indicated by a marked attenuation of the sinusoidal efflux of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP), and by reduced Trypan blue uptake. Furthermore, postischemic bile flow as an indicator of liver function was significantly improved by about 60% with 200 nmol/L ANP. No protection was conveyed by 20 nmol/L ANP nor by pretreatment with 200 nmol/L ANP for only 10 minutes. The effects of ANP seemed to be mediated by the guanylate cyclase-coupled A (GC-A) receptor and cyclic guanosine monophosphate (cGMP): whereas expression of both GC-A and GC-B receptors as well as of the GC-C receptor was found, cGMP did protect from ischemia-reperfusion damage, but selective ligands of the B and C receptor did not. To begin to determine the mechanisms of ANP-mediated protection, different parameters were investigated: ANP had no effect on portal pressure as an indicator of hepatic circulation, nor on intracellular energy depletion determined by adenosine nucleotide concentration. However, the marked augmentation of nuclear factor kappaB (NF-kappaB) binding activity during reperfusion was prevented in ANP-pretreated livers. In conclusion, pretreatment with ANP protects the rat liver from cold ischemia-reperfusion damage. This effect is mediated via the GC-A receptor and cGMP, and may be linked to an influence of ANP on NF-kappaB activation. Thus, ANP signaling via the GC-A receptor should be considered as a new pharmacological target to prevent preservation injury of the liver.  相似文献   

16.
BACKGROUND: Natriuretic peptides are vasodilator hormones involved in the regulation of blood pressure and volume homeostasis. However, the mechanism of these peptides after pneumonectomy remains obscure. METHODS: We investigated changes in the pulmonary arterial pressure and the localization and changes in the atrial (A-type) natriuretic peptide (ANP) and the C-type natriuretic peptide (CNP) in the lung, using immunohistochemistry and radioimmunoassay (RIA) in anesthetized dogs. Furthermore, we examined guanosine 3', 5'-monophosphate (cGMP) levels in plasma and in the contralateral lung. RESULTS: Pulmonary arterial pressure was significantly increased after pneumonectomy. The immunoreactivities of both ANP and CNP were detected in the endothelium of the pulmonary artery. In the contralateral lung, the concentrations of ANP and CNP were both significantly increased. In plasma, only ANP levels were significantly increased. In contrast, the plasma and lung cGMP levels were significantly reduced after pneumonectomy. CONCLUSIONS: We postulate that the processes from secretion in the vascular endothelial cells to the action via ANP and CNP receptors are effected in the contralateral lung tissue at the acute stage of pneumonectomy.  相似文献   

17.
Atrial natriuretic peptide (ANP) has been considered a potential candidate participating in the inhibitory control of pituitary-adrenal secretory activity. Here, we investigated the influence of ANP, infused at two different doses and over infusion intervals of two different durations, on the release of ACTH and cortisol after stimulation with CRH and with combined administration of CRH and vasopressin (VP). In young healthy men, three experiments were conducted. In Exp I, ACTH/cortisol secretory responses to CRH (50 microg) were examined during and after a 45-min period of ANP infusion at a rate of 4.4 microg/min (starting 15 min before CRH injection). In Exp II, ACTH/cortisol secretory responses to CRH (50 microg) were examined during and after a 90-min infusion period of ANP administered at rates of 4.4 and 8.8 microg/min. In Exp III, ANP was infused at a rate of 4.4 microg/min over 90 min, but instead of CRH, a combined administration of CRH (50 microg) and VP (0.5 IU infused within 5 min) was employed to stimulate ACTH/cortisol release. ANP diminished pituitary-adrenal secretory responses within the first hour after stimulation with exogenous secretagogues. Thereafter, the effect of ANP turned in the opposite direction, with distinctly enhanced concentrations of ACTH and cortisol during the third hour after stimulation. The inhibitory effect of ANP during the first hour of the pituitary-adrenal response was more pronounced on concentrations of cortisol than ACTH and was also more pronounced after combined administration of CRH/VP than after stimulation with CRH alone. Increasing the dose of ANP enhanced the late stimulatory effect on ACTH/cortisol release, thereby terminating the early period of inhibited ACTH/cortisol release more abruptly. The late stimulatory effect was enhanced with prolonged infusion of ANP. In addition, it was associated with reduced hematocrit, increased urine volumes collected, increased heart rate, and enhanced plasma VP concentrations. Together, these changes suggest that the late stimulatory effect of ANP on ACTH/cortisol release reflects an effect secondary to its hypovolemic actions. This stimulatory effect originating from peripheral systemic actions of ANP after exogenous administration appears to override a more direct inhibitory action of the peptide on pituitary-adrenal secretory activity. Therefore, we would expect that with localized release into portal hypophyseal blood the inhibitory component of the action of ANP on pituitary-adrenal secretory activity prevails.  相似文献   

18.
OBJECTIVES: The present retrospective analysis of data derived from a population-based study examined the relationship between intake of beta-receptor antagonists and plasma concentrations of the cardiac natriuretic peptides and their second messenger. BACKGROUND: Beta-receptor antagonists are widely used for treatment of cardiovascular disease. In addition to direct effects on heart rate and cardiac contractility, recent evidence suggests that beta-receptor antagonists may also modulate the cross talk between the sympathetic nervous system and the cardiac natriuretic peptide system. METHODS: Plasma concentrations of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and their second messenger cyclic guanosine monophosphate (cGMP) were assessed in addition to anthropometric, hemodynamic and echocardiographic parameters in a population-based sample (n = 672), of which 80 subjects used beta-receptor antagonists. RESULTS: Compared to subjects without medication, subjects receiving beta-receptor antagonists were characterized by substantially elevated ANP, BNP and cGMP plasma concentrations (plus 32%, 89% and 18%, respectively, p < 0.01 each). Analysis of subgroups revealed that this effect was highly consistent and present even in the absence of hypertension, left atrial enlargement, left ventricular hypertrophy or left ventricular dysfunction. The most prominent increase was observed in a subgroup with increased left ventricular mass index. By multivariate analysis, a statistically significant and independent association between beta-receptor antagonism and ANP, BNP and cGMP concentrations was confirmed. Such an association could not be demonstrated for other antihypertensive agents such as angiotensin-converting enzyme inhibitors or diuretics. CONCLUSIONS: Beta-receptor antagonists appear to augment plasma ANP, BNP and cGMP concentrations. The current observation suggests an important contribution of the cardiac natriuretic peptide system to the therapeutic mechanism of beta-receptor antagonists.  相似文献   

19.
There is evidence that during lactation, uptake of the essential branched-chain amino acids (BCAA) by mammary glands exceeds their output in milk protein. In this study, we have measured the potential of lactating rats to catabolize BCAA. The activity, relative protein and specific mRNA levels of the first two enzymes in the BCAA catabolic pathway, branched-chain aminotransferase (BCAT) and branched-chain alpha-keto acid dehydrogenase (BCKD), were measured in mammary gland, liver and skeletal muscle obtained from rat dams at peak lactation (12 d), from rat dams 24 h after weaning at peak lactation and from age-matched virgin controls. Western analysis showed that the mitochondrial BCATm isoenzyme was found in mammary gland. Comparison of lactating and control rats revealed that tissue BCATm activity, protein and mRNA were at least 10-fold higher in mammary tissue during lactation. Values were 1.3- to 1. 9-fold higher after 24 h of weaning. In mammary gland of lactating rats, the BCKD complex was fully active. In virgin controls and weaning dams, only about 20% of the complex was in the active state. Hypertrophy of the liver and mammary gland during lactation resulted in a 73% increase in total oxidative capacity in lactating rats. The results are consistent with increased expression of the BCATm gene in the mammary gland during lactation, whereas oxidation appears to be regulated primarily by changes in activity state (phosphorylation state) of BCKD.  相似文献   

20.
Hypertension is commonly associated with diabetes mellitus. The aim of the present study was to explore the pathophysiological significance of the natriuretic peptide (NP) system in hypertension associated with genetically obese/hyperglycemic Wistar fatty rats. The messenger RNA (mRNA) levels of the two biologically active NP receptors, NP-A receptor [more specific for atrial natriuretic peptide (ANP)] and NP-B receptor [more specific for C-type natriuretic peptide (CNP)], and CNP mRNA levels were determined in the aorta and kidney by ribonuclease protection assay. Plasma ANP levels were determined by RIA. Both NP-A and NP-B receptor mRNA levels in the aortae of Wistar fatty rats were double those in Wistar lean rats. Plasma ANP levels and CNP mRNA levels in the aorta of Wistar fatty rats were also significantly higher than those in Wistar lean rats. In contrast, there was no significant difference in renal levels of the mRNA for both NP receptors and CNP between the two strains. Administration of a NP-A and -B receptor antagonist, HS-142-1, to Wistar fatty rats resulted in a significant increase in systolic blood pressure and a larger decrease in plasma cGMP level than that in Wistar lean rats, with no difference in the extents of decrease in urine volume and urinary sodium excretion between the two strains. These results suggest that both the ANP/NP-A system and the CNP/NP-B system in vessels are up-regulated at the level of gene expression and may, thus, play an important role in counteracting the hypertension associated with diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号