首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
采用热模拟压缩试验研究GH696合金在变形温度为880~1020℃、应变速率为0.01~10.0 s~(-1)、变形程度为30%~60%条件下的高温变形行为。采用金相显微镜对GH696合金高温压缩变形后的显微组织进行观察。结果表明:较高的变形温度和较低的应变速率有利于GH696合金的动态再结晶。采用加工硬化率-流动应力曲线确定GH696合金的动态再结晶临界应变,应用Avrami方程建立GH696合金的动态再结晶体积分数模型,并根据合金的金相定量试验结果建立GH696合金的动态再结晶晶粒尺寸模型。  相似文献   

2.
对GH4720Li合金在1080~1180℃、应变速率为0.1s~(-1)条件下的双道次压缩过程的热变形行为进行研究。结果表明:动态再结晶是GH4720Li合金的主要软化机制。在双道次压缩间歇期内,合金发生亚动态再结晶、静态再结晶和晶粒长大;低于1120℃的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度缓慢;1120℃及以上温度的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度加快。随变形温度升高和第一道次变形量增大,道次间歇期的亚动态再结晶和静态再结晶速度加快。γ′相在热变形过程中发生协调变形,并发生细化。  相似文献   

3.
GH625合金的动态再结晶行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3800热模拟试验机研究了GH625合金在变形温度为950~1150℃,应变速率为0.001~5s-1条件下的热变形特性,并用OM和TEM分析了变形条件对微观结构的影响。结果表明:当应变量很小时,该合金没有发生再结晶,直到应变量达到0.1时才开始有再结晶晶粒析出。随着变形温度的升高,再结晶晶粒尺寸增大,位错密度降低;当温度较低时显微结构中可以观察到孪晶。当变形温度一定时,随应变速率的增大,再结晶的形核率增大且晶粒变小,位错密度变大;而当应变速率较低时,再结晶进行得比较充分,晶粒尺寸较大。根据实测的应力-应变曲线,获得了该合金发生动态再结晶的临界应变εc和峰值应变εp与Z参数之间的关系:εc=2.0×10-3.Z0.12385,lnεp=-6.02285+0.12385lnZ。此外,还采用定量金相法计算出了合金的动态再结晶体积分数,并建立了该合金动态再结晶的动力学模型:Xd=1-exp[-0.5634(ε/εp-0.79)1.313]。  相似文献   

4.
采用Gleeble-3500热模拟试验机进行高温等温压缩试验,研究了热变形参数对GH690合金晶粒细化的影响.结果表明:当变形程度较小时,随着真应变的增加,GH690合金动态再结晶的晶粒尺寸逐渐减小,但当真应变达到0.5后,随着真应变继续增加,动态再结晶晶粒尺寸变化不大;动态再结晶晶粒尺寸随变形温度的升高而增大,随应变速率的增大而减小.建立起热变形条件即Z参数与动态再结晶晶粒尺寸的关系.  相似文献   

5.
通过热模拟实验对GH4169高温合金热态变形过程中的力学性能进行研究,分析了初始晶粒尺寸、应变速率、变形温度等对GH4169合金热变形时峰值应力的影响。结果表明,该合金的峰值应力随应变速率的增大而增大,随变形温度的增大而减小。该合金的流动应力随初始晶粒尺寸的增大而增大,其原因是该合金在热变形过程中发生了动态再结晶。确定了基于初始晶粒尺寸的峰值应力与热变形参数之间的关系式,确定了GH4169合金的变形激活能。  相似文献   

6.
对GH4169高温合金在Gleeble-3500热模拟实验机进行了双道次和单道次热压缩实验。分析了变形温度、应变速率、间隔保温时间、变形量和初始晶粒尺寸对GH4169高温合金静态再结晶体积分数的影响。实验结果表明:变形温度越高、应变速率越大、道次间隔时间越长,变形量越大,初始晶粒度越小,静态再结晶体积分数越大。根据实验结果,建立了GH4169高温合金的静态再结晶模型,并将所建立的模型的预测结果和实验结果进行了对比分析,二者比较吻合。  相似文献   

7.
GH4169合金热加工过程中的显微组织演化数学模型   总被引:6,自引:0,他引:6  
采用Thermecmastor—Z型热加工模拟试验机对GH4169合金热态变形过程中(温度范围为960~1020℃,应变速率范围为10^-2~50s^-1,等效应变范围为0.357~0.916和变形后高温滞留阶段内(滞留时间为0~15s)的显徽组织演化过程进行了实验研究,定量地测定了试样内的动态再结晶晶粒尺寸和再结晶体积分数。根据实验结果,指出了GH41.69合金热加工过程中的主要显微组织演化过程是动态和亚动态再结晶,确定了峰值应力和峰值应变与锻造热力参数间的关系,建立了动态再结晶和亚动态再结晶过程的运动学方程和晶粒尺寸演化模型,从而为预测和控制GH4169合金锻件的组织性能提供了依据。  相似文献   

8.
建立了一类双道次热变形过程的二维元胞自动机模型。模型综合考虑了热变形过程涉及的动态再结晶、静态回复、静态再结晶、亚动态再结晶和晶粒长大等单个的物理现象。利用模型对GCr15钢的双道次热压缩过程进行了模拟,讨论了变形温度、应变速率、初始晶粒尺寸、第一道次变形量以及道次间隔时间对微观组织演变、流变应力行为和再结晶动力学的影响。将模拟结果和已获得的实验结果进行比较,吻合较好。  相似文献   

9.
采用Gleeble-1500D型热力模拟试验机对不同初始奥氏体晶粒尺寸的SA508Gr.4N钢,在变形温度1050~1250℃、应变速率0.001~0.1 s~(-1),道次间隔保温时间120~300 s进行双道次热压缩变形试验。研究了SA508Gr.4N钢的亚动态再结晶行为。结果表明:在本试验变形条件范围内,两种不同初始奥氏体晶粒尺寸的SA508Gr.4N钢均能发生亚动态再结晶。初始奥氏体晶粒直径越细小,SA508Gr.4N钢越易发生动态再结晶。变形道次间隔时间越长,亚动态再结晶就越显著。亚动态再结晶分数随着变形温度的升高以及初始奥氏体晶粒直径的增加而增大。  相似文献   

10.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

11.
通过压缩锥形试样研究了温度和变形程度对GH738合金微观组织的影响,分析了不同变形程度下,合金的再结晶晶粒尺寸、再结晶体积分数和平均晶粒尺寸的演化情况,为制定GH738合金热态变形工艺提供了理论依据。研究结果表明,随着温度升高,再结晶晶粒尺寸变大;随变形程度减小,再结晶体积分数逐渐减小。在不同变形程度下,在1120℃温度时变形可获得较高的再结晶体积分数和较均匀的再结晶晶粒尺寸;当加热温度1100~1140℃范围内,变形程度大于28%时,可以获得晶粒尺寸较为均匀的微观组织。  相似文献   

12.
AG700L钢主要应用于汽车大梁等重要承重结构件。通过在Gleeble-3800热模拟试验机上采用双道次压缩试验,研究了AG700L钢在应变速率为0.01~2 s-1、变形温度为950~1 050℃、道次间隔时间为10~120 s不同条件下的亚动态再结晶行为。结果表明:AG700L钢道次间隔内亚动态再结晶行为受变形温度、应变速率和道次间隔时间的影响显著;随变形温度的升高,亚动态再结晶体积分数先缓慢增加,然后迅速增加;随应变速率的增加,亚动态再结晶体积分数先迅速增加,然后趋于平稳;随道次间隔时间的增加,亚动态再结晶体积分数明显增加。随变形温度的升高、应变速率的增加以及道次间隔时间的延长,变形后AG700L钢的晶粒尺寸显著增加,组织变得更加均匀。同时,建立了AG700L钢的亚动态再结晶动力学模型,为其实际生产轧制工艺的制定与优化提供了依据。  相似文献   

13.
通过光学显微镜、扫描电镜、电子背散射衍射、显微硬度计等手段,系统研究了GH738合金不同冷轧变形量后中间退火组织演变规律。研究表明:变形量是影响加工硬化的主要因素;经过不同冷轧变形后,1000℃退火奥氏体未发生再结晶;在1040~1080℃进行退火处理,可得到均匀细小的等轴晶。建立了GH738合金冷加工本构方程和再结晶晶粒长大方程。  相似文献   

14.
为了模拟难变形镍基高温合金GH4720Li开坯锻造过程,采用Gleeble-3800热模拟试验机研究经均匀化处理的GH4720Li铸锭高温压缩变形时的力学流动行为,分析高温变形过程中微观组织演化规律。结果表明,GH4720Li合金在1100℃,0.1 s-1条件下应力水平达到250 MPa,且应力对热变形温度和应变速率敏感,动态再结晶是主要的软化机制。粗晶组织提高了合金动态再结晶临界变形温度和应变速率,如在变形量为60%,变形条件为1140℃,0.001 s-1和1180℃,0.001s-1才能发生完全动态再结晶。计算的粗晶GH4720Li合金热变形激活能Q=1171kJ/mol,较高的热变形激活能表明粗晶组织不利于热塑性变形和动态再结晶的发生。基于本研究,铸态GH4720Li合金开坯温度应高于1140℃,同时保证较低的应变速率,以确保动态再结晶的充分发生,实现枝晶组织破碎。  相似文献   

15.
In order to simulate the microstructure evolution during hot compressive deformation, models of dynamic recrystallization (DRX) by cellular automaton (CA) method for 7055 aluminum alloy were established. The hot compression tests were conducted to obtain material constants, and models of dislocation density, nucleation rate and recrystallized grain growth were fitted by least square method. The effects of strain, strain rate, deformation temperature and initial grain size on microstructure variation were studied. The results show that the DRX plays a vital role in grain refinement in hot deformation. Large strain, high temperature and small strain rate are beneficial to grain refinement. The stable size of recrystallized grain is not concerned with initial grain size, but depends on strain rate and temperature. Kinetic characteristic of DRX process was analyzed. By comparison of simulated and experimental flow stress–strain curves and metallographs, it is found that the established CA models can accurately predict the microstructure evolution of 7055 aluminum alloy during hot compressive deformation.  相似文献   

16.
The effects of process parameters on the microstructural evolution, including grain size and volume fraction of the α phase during hot forming of a TC6 alloy were investigated using compression tests. Experiments were conducted on the material with (α β) phases at deformation temperatures of 800, 860, 920, and 950℃, swain rates of 0.001, 0.01, 1, and 50 s^-1, and height direction reductions of 30%, 40%, and 50%. After reaching a peak value near 920, the gram size and volume fraction decrease with further increase of deformation temperature. The strain rate affects the morphologies and grain size of α phase of the TC6 titanium alloy. At a lower strain rate, the effect of the swain rate on the volume fraction is greater than that at a higher swain rate under the experimental conditions. The effects of the swain rate on the microstructure also result from deformation heating. The grain size of the α phase increases with an increase in height direction reduction after an early drop. The effect of height direction reduction on the volume fraction is similar to that of the grain size. All of the optical micrographs and quantitative metallography show that deformation process parameters affect the microstructure during hot forming of the TC6 alloy, and a correlation between the temperature, strain, and strain rate appears to be a significant fuzzy characteristic.  相似文献   

17.
对GH4169合金涡轮盘锻件进行模拟研究,利用有限元模拟软件结合二次开发对热变形后的涡轮盘的锻后温度及应变的分布规律进行模拟预测。同时,对热变形后盘件进行不同冷却速率的显微组织模拟预测研究。结果显示:该热变形计算流程方法可行,可以实现不同冷却速率下显微组织的模拟;显示热变形后的涡轮盘经过水冷、油冷和空冷等冷却,冷却速率越快晶粒越细小,而再结晶分数越少。该结果对实际GH4169合金涡轮盘锻造热加工可提供指导。  相似文献   

18.
The 3003 aluminum alloys with four different initial grain sizes were deformed by isothermal compression in the range of deformation temperature 300–500 °C at strain rate 0.01–10.0 s?1 with Gleeble-1500 thermal simulator. The results show that the smaller the initial grain size of the alloy, the greater the required deformation resistance, and the smaller the peak strain, which is conducive to the occurrence of dynamic recrystallization (DRX). The DRX critical strain increases with the decrease of the deformation temperature or the increase of the strain rate, and the DRX volume fraction increases with the decrease of the strain rate and the increase of the deformation temperature. The average grain size of 3003 aluminum alloy after deformation is smaller than that before deformation. The smaller the initial grain size, the lower the critical recrystallization strain. So the DRX is carried out more fully, contributing to the thermoplastic deformation of the alloy.  相似文献   

19.
利用物理模拟实验方法对具有不同晶粒尺寸的690合金试样进行热压缩变形实验,变形温度范围为1100~1200℃,应变速率分别为0.1,1,10s-1,获得了合金的流变应力数据,并对合金变形后的组织特征进行了分析,建立了包含初始晶粒度参数的本构关系模型。结果表明:晶粒尺寸增大使690合金高温变形时的流变应力增加,发生动态再结晶的临界应变增大,动态再结晶体积分数减小,根据所建立的流变应力本构模型计算出的流变应力值与实验值相近,从而完善了690合金的热变形本构方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号