首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

2.
采用Gleeble-1500D研究了高密度Ni-42W-10Co-1Mo(wt.%)中/重合金(MHA)在1150~1300°C和应变速率0.001~1s?1下流变行为和微观组织演化规律。研究结果表明,该合金初始组织由面心立方基体和初生σ相构成。流变应力对变形温度和应变速率敏感,在1150℃变形,应力-应变曲线呈现出典型的动态回复软化特征,而在1200-1350℃变形呈现出典型动态再结晶软化特征。基于应力-应变曲线建立Arrhenius本构方程,计算得到Ni-42W-10Co-1Mo合金热变形激活能为446.2 kJ/mol。基于动态材料模型构建该合金热加工图,发现在1300℃高应变速率下存在失稳区。通过微观组织观察,揭示其动态再结晶机制主要为不连续动态再结晶,σ相促进动态再结晶优先在其周围形核。最终优化获得了Ni-42W-10Co-1Mo合金最佳的热加工窗口:1250–1300°C,应变速率0.1–0.01s?1  相似文献   

3.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

4.
采用Gleeble-3500热模拟试验机对Pd-20W合金进行热压缩试验,研究了合金在变形温度1000~1200 ℃、应变速率0.001~1.000 s-1条件下的流变应力以及变形过程中的显微组织。结果表明,合金的流变应力在变形初期随着真应变的增大快速上升,出现峰值应力后逐渐下降并达到稳态或略有下降。该合金热压缩变形的流变应力行为可用Zener-hollomon参数来描述,拟合计算得到了该材料的形变激活能等参数,获得流变应力的本构方程。热压缩变形后合金组织呈现一定程度的协同变形特征,晶界动态再结晶趋势增强,合金的主要软化机制为动态再结晶,表现出典型的应变诱发晶界形核机制特点。  相似文献   

5.
利用单道次等温压缩实验获得了锻态GH4742合金在变形温度为 1020~1150 ℃、应变速率为0.001~1 s-1、真应变为0.65时的真应力-应变曲线,构建了GH4742合金的热变形本构方程和热加工图,并采用SEM、EBSD等研究了热变形过程中微观亚结构以及γ′相的演变规律,建立了变形工艺条件-组织形态差异-性能变化之间的关联性。结果表明:合金的组织性能演化机制与Z参数密切相关,1080 ℃低温变形时,应变速率由0.001 s-1增加至1 s-1后,lnZ值由75.6增加至82.6,热效应增强,小角度晶界比例降低,动态再结晶比例增加,组织发生细化,基体硬度增加;1110 ℃高温变形时,随着应变速率增加,lnZ值由74增加至78.5,位错滑移和晶界迁移减缓,小角度晶界比例增加,动态再结晶比例降低,加工硬化程度增加,基体硬度增加。GH4742合金不发生动态再结晶晶粒粗化的临界lnZ值为73。结合热加工图和变形组织分析得出锻态GH4742合金良好的加工区域为变形温度1110~1150 ℃、应变速率0.01~0.1s-1。  相似文献   

6.
本文借助Gleeble-3800热模拟试验机系统地研究了铸态粗晶Ti-5553合金在温度700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温变形行为。研究结果表明合金的流变应力对变形温度和速率都有强敏感性,流变软化过程也随变形参数的改变呈现出不同的模式。通过经典的动力学模型,建立了合金高温变形的本构关系和激活能分布图,进一步基于动态材料模型构建了合金的热加工图并实现了对不同加工区间变形机制的识别。合金在低温区(700 ℃)和高速率区( 1 s-1)均展现出失稳变形的特征,包括外部开裂、绝热剪切带、局部流变等机制,在实际加工中应对这些加工区域进行规避。合金在800 ℃及中低速率( 0.1 s-1)变形下的主导机制为α相的动态析出,在中高温(900 ℃-1100 ℃)及中低速率变形下的主导机制为动态回复与动态再结晶的结合。此外,合金在高温较低应变速率(1100 ℃/0.01 s-1)条件的变形中表现出大范围动态再结晶的行为特点并伴随稳定的流变软化,因此此条件附近的参数区间被认定为该合金的最优加工窗口,应在实际加工中给予优先考虑。  相似文献   

7.
本文通过高温热压缩试验研究Ti-555钛合金热变形过程中变形温度、应变速率对流变应力的影响,采用Arrhenius双曲正弦函数模型推导出Ti-555本构方程,并依据动态材料模型建立了ε=0.6时的热加工图。结果表明,Ti-555钛合金流变应力对应变速率和变形温度较为敏感,热变形时随变形温度升高或应变速率降低,流变应力下降。根据热加工图确定了两个热加工安全区参数为(1)变形温度为850~950 ℃、应变速率为0.6~10 s-1;(2)变形温度为950~1150 ℃、应变速率为0.36~0.9 s-1。  相似文献   

8.
乏燃料后处理强酸、强氧化性、强放射性的工作环境,对后处理溶解器选材、加工工艺提出了严苛要求。本论文研究了自主设计Zr-1.0Ti-0.35Nb合金在670 ~ 750 ℃温度范围、三种不同应变速率0.01、0.1和1 s-1条件下的热压缩变形行为,分析了热压缩过程中该合金的微观组织特征,并基于峰值应力构建了其热变形本构模型。结果表明,应变速率和变形温度对Zr-1.0Ti-0.35Nb合金热变形过程具有显著影响,流变应力随应变速率增加而增大,随变形温度的增加而减小,达到峰值应力后流变曲线呈现明显动态再结晶特征;提高变形温度有助于发生动态再结晶和晶粒长大;基于Arrhenius本构方程计算得到Zr-1.0Ti-0.35Nb合金的热变形激活能为225.8 kJ/mol,硬化指数为5.62,说明合金元素Ti使锆合金的热变形激活能升高;实验值与预测值之间的相关系数为0.97,平均相对误差为6.15%,证实此本构方程预测Zr-1.0Ti-0.35Nb合金流变应力的准确性,能够为新型锆合金热加工工艺优化提供理论指导。  相似文献   

9.
利用等温热压缩实验,研究了TG700C合金变形温度为1050~1250℃、应变速率为1~20 s-1、变形量为60%变形条件下的热变形及动态再结晶行为。对材料高应变速率下的变形热效应进行了温升修正,获得了该合金的流变曲线和热变形本构方程,热变形过程的表观激活能为Q=624.762 k J/mol。该合金经过温升修正后的流变曲线呈现稳态的流变应力,不同变形温度和应变速率下合金的流变应力存在差异。合金的动态再结晶形核方式为应变诱导晶界迁移形核,在高温低应变速率下,动态再结晶形核容易发生,再结晶的比例随着温度的升高和应变速率的降低而提高。  相似文献   

10.
用热模拟试验机、光学显微镜、MATLAB软件研究了双态组织Ti80合金在变形温度860 ~ 1020 ℃、应变速率0.001 ~ 10 s-1、最大变形量50%下的热变形和热加工特性。结果表明:Ti80合金为负温度敏感型、正应变速率敏感型材料,主要软化机制随温度的升高由动态再结晶转变为动态回复。利用MATLAB编程构建了应变补偿本构方程与热加工图,计算应力与试验应力的相关系数R=0.994、平均相对误差AARE=7.443%;合金最佳热加工工艺参数区间为:[980 ~ 1015 ℃]-[0.013 ~ 0.100 s-1],该区峰值功率耗散系数h=64%。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号