首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
采用压电分流阻尼原理,对根部粘贴压电陶瓷片的柔性悬臂梁振动控制进行了实验研究。实验中设计了一个由电容、电阻和运算放大器组成的等效电感电路,解决了压电分流电路设计中的超大电感器问题。根据测试得到的带压电分流电路悬臂梁的闭路和开路自然频率,确定出了压电分流电路的最优参数,对悬臂梁的瞬态振动和单频简谐激励下的稳态振动控制实验表明了压电分流阻尼被动控制结构振动的有效性。  相似文献   

2.
采用压电分流控制方法对旋转柔性梁进行振动抑制,在分析旋转梁压电分流控制方程的基础上采用模拟退火算法对电路中的电阻、电感原件进行了优化。首先,使用Hamilton原理建立了绕x轴旋转柔性梁的压电分流阻尼控制方程,推导了基于压电分流控制的压电分流系统传递函数;然后,基于模拟退火优化算法思想,建立传递函数的优化模型,并对目标函数进行优化;最后,针对旋转梁压电分流电路优化进行数值计算与分析。仿真结果表明:压电分流阻尼可以很好地抑制柔性旋转梁振动;与遗传算法相比,模拟退火优化算法不仅可以取得很好的优化效果,且优化效率得到极大的提高。  相似文献   

3.
《机械强度》2015,(5):823-827
针对某发动机推力轴承弹性环式隔振器阻尼效果不太理想、阻尼不可调等问题,引入压电分流阻尼技术用于弹性环式隔振器减振特性研究。采用压电片代替弹性环式隔振器中的阻尼材料,设计了弹性环式压电分流阻尼隔振器,并设计了基于回转器的共振压电分流电路,建立压电分流阻尼系统机电耦合模型,研究分流电路参数的优化方法,确定了分流电路最优参数。最后建立弹性环式压电分流阻尼隔振器测试系统,实验测试了压电分流阻尼系统的减振性能,结果表明压电分流阻尼使得结构共振响应幅值降低了9 d B,明显改善了弹性环式隔振器的阻尼特性。  相似文献   

4.
利用压电材料的正压电效应,设计出一种新型的状态开关型压电分流电路.由压电换能器将结构振动变形的应变能转化为电介能,当压电换能器极化表面的电荷积聚达到最大值时,闭合分流电路中的状态开关,分流电路短路,压电换能器上下表面的正负电荷中和抵消,以焦耳热的形式耗散掉电介能,达到抑制结构振动的目的.将这种振动控制技术应用于柔性悬臂梁的振动抑制,研究状态开关闭合持续时间对抑振效果的影响.实验结果表明,开关的闭合持续时间约为结构振动周期的1/10时,抑振效果最佳,悬臂梁第一阶稳态响应幅值降低量约为55%.  相似文献   

5.
采用阻抗分析技术,根据压电材料的机电耦合特性和RLC电路的电学阻抗特性,详细推导了RLC串联压电分流阻尼系统的机械阻抗特性,研究了作单模态振动的悬臂梁在粘贴压电片后形成的压电悬臂梁系统的位移传递函数特性。借助于调谐质量阻尼减振理论,进行了压电分流阻尼系统的参数优化分析,并通过算例验证了参数优化前后压电分流阻尼系统对悬臂梁振动的被动控制效果。  相似文献   

6.
针对新能源汽车振动与噪声问题,采用在板材上周期贴敷压电片并连接分流电路的方法构建了智能超材料板。仿真结果表明,电阻分流电路可以有效抑制模态振动峰值;电感分流电路和电阻-电感分流电路都可以形成局域共振带隙,带隙内相应频率振动可以得到有效抑制,且带隙位置可方便的通过调节电感值实现。构建的智能超材料板具有附加质量低及智能化调节优点,可有效减轻新能源汽车车身振动。  相似文献   

7.
悬臂梁式压电振动能采集器的建模及实验验证   总被引:2,自引:3,他引:2  
为了根据环境振动和电学负载的特点对悬臂梁式微型压电振动能采集器进行优化,本文考虑质量块质心与悬臂梁末端的位置差异,建立了在基础激励作用下采集器的运动微分方程和边界条件.通过引入常数,建立了对单压电层、双压电层并联和双压电层串联的3个悬臂梁式微型压电振动能采集器均适用的耦合电路方程,得到了采集器固有频率和振型的表达式,推...  相似文献   

8.
彭川来 《机电技术》2014,(3):69-70,74
研究非线性电阻与线性电感串联,线性电阻与非线性电感串联两种RL串联的一阶非线性电路的暂态过程。利用分段线性化法求出RL非线性一阶电路暂态过程的理论解,同时通过实验测出RL非线性一阶电路充电过程的曲线,理论与实验充电曲线基本吻合。与RL线性一阶电路比较,RL非线性一阶电路充放电过程遵循完全不同的规律,并出现临界慢化现象。  相似文献   

9.
压电振动能量采集器是实现低功耗电子产品无线自供电的核心部件,其与非线性接口转换电路的耦合机理是提升无线 自供电系统输出性能的关键理论。 以非线性三稳态压电振动能量采集器及其 4 种非线性接口转换电路为对象,建立动力学模 型,利用谐波平衡方法求解不同接口电路下系统耦合动态响应的稳态解;仿真分析了系统参数对接口电路输出特性的影响。 研 究结果表明,当机电耦合系数较小时,串联同步电感开并接口电路(S-SSHI)适合于频率小于 7 Hz、负载电阻小于 7. 4×10 6 Ω 的 场合,而并联同步电感开关接口电路( P-SSHI) 则相反;当机电耦合系数较大时,直流电( DC) 电路具有优势,功率达到 4. 5×10 -3 mW;交流电(AC)电路和 DC 电路具有较宽的机电耦合系数范围,而 P-SSHI 电路和 S-SSHI 电路却较窄但输出功率高, 最大输出功率可达到 19. 0×10 -3 和 14. 3×10 -3 mW。 实验验证了仿真结果的正确性。  相似文献   

10.
研究了状态开关分流电路与同步开关分流电路的抑振原理和实现方法;设计出一种控制这两种开关开闭状态的控制器;分别选用这两种开关分流电路对板进行抑振实验,实验中状态开关分流电路和同步开关分流电路控制下板的第一阶稳态响应分别得到约13.4%和50.6%的降低效果;研究了同步开关分流电路的抑振效率与其电感的取值及开关的持续闭合时间之间的关系,实验证明了开关的最佳闭合时间为1/2振荡电路周期,而当电路振荡频率与结构振动频率比值间于10~50时,所对应的电感取值为其最佳取值范围。  相似文献   

11.
The piezoelectric shunt damping technique based on the direct piezoelectric effect has been known as a simple, low-lost, lightweight, and easy to implement method for passive damping control of structural vibration. In this technique, a piezoelectric material is used to transform mechanical energy to electrical energy. When applying the piezoelectric shunt damping technique to passively control structural vibration, the piezoelectric materials must be bonded on or embedded in host structure where large strain is induced during vibration, thus to ensure vibrational mechanical energy to be transformed into electrical energy as much as possible. In this paper, the concept of vibration control efficiency of a piezoelectric shunt damping system is proposed and studied theoretically and experimentally. In the study, PZT patches are used as energy converter, and the vibration control efficiency is expressed by the vibration reduction rate per area of the PZT patches. Emphasis is laid on the effect of the generalized electromechanical coupling coefficient K31 on the vibration control efficiency. Four PZT patches with different sizes are bonded on the geometrical central area of four similar clamped aluminum plates, respectively, and vibration control experiments are conducted for these plates using the R-L shunt circuit. The results indicate that the bigger the coupling coefficient K31, the larger the rate of vibration reduction, and hence, the higher the vibration control efficiency. It also shows that the vibration responses of the first mode of the plates bonded with different PZT patches can be reduced by about 30.5%,48.58%,85.47%, and 89.91%, respectively. It comes to a conclusion that the vibration control efficiency of the piezoelectric shunt damping system decreases with the increase of the area of the PZT patch, whereas the vibration reduction of the plate increases with the area of the PZT patch. Therefore, it is necessary to make topology optimization for the PZT patch in the vibration control utilizing the piezoelectric shunt damping technique.  相似文献   

12.
Comparison between four piezoelectric energy harvesting circuits   总被引:1,自引:0,他引:1  
This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.  相似文献   

13.
This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton’ s principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.  相似文献   

14.
In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton’s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-Karrnan nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-β method. To achieve the best damping effect, optimal share and location of the piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.  相似文献   

15.
Piezoelectric materials can be used for structural damping because of their ability to efficiently transform mechanical energy to electrical energy and vice versa. The electrical energy may be dissipated through a connected load resistance. In this paper, a new optimization technique for the optimal piezoelectric shunt damping system is investigated in order to search for the optimal shunt electrical components of the shunt damping circuit connected to the piezoelectric patch on a vibrating structure for the structural vibration suppression of several modes. The vibration suppression optimization technique is based on the idea of using the piezoelectric shunt damping system, the integrated p-version finite element method (p-version FEM), and the particle swarm optimization algorithm (PSOA). The optimal shunt electrical components for the piezoelectric shunt damping system are then determined by wholly minimizing the objective function, which is defined as the sum of the average vibration velocity over a frequency range of interest. Moreover, the optimization technique is performed by also taking into account the inherent mechanical damping of the controlled structure with the piezoelectric patch. To numerically evaluate the multiple-mode damping capability by the optimal shunting damper, an integrated p-version FEM for the beam with the shunt damping system is modeled and developed by MATLAB. Finally, the structural damping performance of the optimal shunt damping system is demonstrated numerically and experimentally with respect to the beam. The simulated result shows a good agreement with that of the experimental result. This paper was recommended for publication in revised form by Associate Editor Eung-Soo Shin Jin-Young Jeon received his Ph.D. degree in Mechanical and Aerospace Engineering from Tokyo Institute of Technology in 2005. Dr. Jeon is currently a senior engineer at Digital Printing Division, Digital Media & Communications Business at Samsung Electronics Co., Ltd., Korea. His research interests are the areas of structural-acoustic optimization, sound quality, motion quality, and vibration control.  相似文献   

16.
The piezoelectric materials, as the most widely used functional materials in smart structures, have many outstanding advantages for sensors and actuators, especially in vibration control, because of their excellent mechanical-electrical coupling characteristics and frequency response characteristics. Semi-active vibration control based on state switching and pulse switching has been receiving much attention over the past decade because of several advantages. Compared with standard passive piezoelectric damping, these new semi-passive techniques offer higher robustness. Compared with active damping systems, their implementation does not require any sophisticated signal processing systems or any bulky power amplifier. In this review article, the principles of the semi-active control methods based on switched shunt circuit, including state-switched method, synchronized switch damping techniques, and active control theorybased switching techniques, and their recent developments are introduced. Moreover, the future directions of research in semi-active control are also summarized.  相似文献   

17.
介绍三相智能电能表外控技术要求和微型断路器技术特点,详述了分励脱扣器的工作原理,给出了微型继电器控制分励脱扣断路器的应用电路,以及分励脱扣断路器与三相智能电能表配合使用的接线方法。最后分析了微型断路器通断状态检测的实用方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号