共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
随着云存储技术的飞速发展,许多资源有限用户为节约本地存储成本而将图像外包到云端.然而,云服务器是不完全可信的,如何在确保图像隐私前提下进行特征提取成为一个棘手的问题.为了解决该问题,本文利用同态加密技术,提出了一种基于密文域上的图像特征提取方案.该方案不仅能确保外包图像的隐私安全,也可以确保图像特征提取时的隐私安全.最... 相似文献
4.
5.
6.
7.
应用同时定位与地图创建理论建立全区域覆盖移动机器人导航系统,融合航位推算理论和基于环境特征的定位方法,设计了基于光电编码器--磁航向传感器组合和LMS激光雷达的混合定位系统.使用扩展Kalman滤波技术完成了基于特征直线的机器人位置更新.通过计算机仿真,结果表明建立的混合定位系统和同时定位与地图创建方法是一种切实可行的全区域覆盖移动机器人的导航方法. 相似文献
8.
9.
基于小波包-包络分析的故障特征提取方法 总被引:3,自引:0,他引:3
针对齿轮、滚动轴承等的早期损伤类故障,提出将小波包分解作为包络分析的前置处理手段以提取振动信号的故障信息特征。在简述小波包基本原理的基础上.通过仿真信号.对振动信号的具体处理过程进行分析,并对可能遇到的问题.提出处理办法.然后应用于诊断实例。结果表明,该方法能够自由确定振动信号的频带划分并全面获得各频带内隐含的故障特征,且易于实现,有一定的工程应用价值。 相似文献
10.
11.
基于VMD的故障特征信号提取方法 总被引:2,自引:0,他引:2
变模式分解(variational mode decomposition,简称VMD)能够将多分量信号一次性分解成多个单分量调幅调频信号(variational intrinsic mode function,简称VIMF),但对噪声比较敏感。利用VMD对噪声的敏感特性,提出了一种基于VMD的降噪方法。利用排列熵定量确定VMD分解后各分量的含噪程度,对高噪分量直接剔除,对低噪分量进行Savitzky-Golay平滑处理,然后重构信号。运用该方法降噪后,对重构信号进行变模式分解,能够有效提取故障特征信号。仿真和实例分析表明,基于VMD的降噪方法的降噪效果优于小波变换降噪方法,VMD能有效提取故障特征信号。 相似文献
12.
13.
14.
针对滚动轴承特征频率提取问题,提出自适应部分集成局部特征尺度分解(adaptive partly-ensemble local charact-eristic-scale decomposition,简称APLCD)与小波包变换(wavelet package transform,简称WPT)结合的APLCD-WPT方法。首先,利用APLCD对滚动轴承振动信号进行处理,通过添加幅值随频率变化的噪声改善信号极值点分布,再提取内禀尺度分量(intrinsic mode component,简称ISC);其次,对ISC分量中模态混淆部分使用WPT进行修正,提取滚动轴承特征频率信号。应用提出方法对实测的卧式螺旋离心机振动信号进行研究,结果表明,基于APLCD-WPT的算法能够有效地解决模态混淆问题,实现特征频率信号的精确提取。 相似文献
15.
16.
17.
针对齿轮故障特征微弱,在强背景噪声下难以有效提取的问题,提出了一种改进奇异谱分解(ISSD)结合奇异值分解(SVD)的齿轮故障特征提取方法。针对奇异谱分解(SSD)算法中模态参数需凭经验选取的缺陷,基于散布熵优化算法对SSD算法进行了改进,在得到既定的一组奇异谱分量的基础上,根据峭度值最大准则筛选出了最佳奇异谱分量并进行了SVD处理,采用奇异值能量标准谱自适应地确定了信号重构阶数以还原信号和提高降噪效果。最后对信号进行包络解调以提取齿轮故障特征,将所提方法运用到仿真信号和齿轮实测信号中,并同传统包络谱、SSD包络谱以及经验模态分解结合SVD(EMD-SVD)方法进行了对比分析,结果表明,所提方法的降噪和特征提取效果更佳,能够更加有效地实现齿轮故障的判别。 相似文献
18.
针对无反射板激光导航机器人地图创建的直线特征提取,采用逐步分解的方法,将直线特征提取分为断点检测、线段分割、直线提取三个步骤逐步分离点集。首先采用自适应阈值法进行断点检测;然后基于迭代适应点算法进行点集分离、线段分割;最后采用最小二乘法拟合直线并结合区域搜索法进行优化,进一步提高直线特征提取的精度。实验表明,算法的重复定位精度在±6 mm以内,特征提取时间不大于0.02 s,满足机器人的实际导航需求。 相似文献
19.
针对滚动球轴承振动加速度信号特征提取问题,提出一种基于中心对称局部二值模式(center-symmetric local binary pattern,简称CSLBP)的时频特征提取方法。首先,利用广义S变换对滚动球轴承振动加速度信号进行处理,通过采用时频聚集性度量准则自适应地确定广义S变换的调整参数,从而获取时频分辨性较好的二维时频图;然后,计算二维时频图的CSLBP,提取CSLBP纹理谱描述滚动球轴承振动加速度信号的时频特征。对滚动球轴承正常、外圈故障、内圈故障和滚动体故障4种不同状态的振动加速度信号进行了研究。结果表明,CSLBP纹理谱能有效地表达滚动球轴承振动加速度信号的时频特征,与局部二值模式(local binary pattern,简称LBP)和统一模式LBP纹理谱相比,CSLBP纹理谱具有特征维数低和区分性能好的优点。 相似文献