首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metal-conducting single-walled carbon nanotubes(m-SWNTs)with small diameters(0.7 nm-1.1 nm)are selectively removed from the single-walled carbon nanotubes(SWNTs)by using HNO 3 /H 2 SO 4 mixed solution.Semiconducting single-walled carbon nanotubes(s-SWNTs)can be separated efficiently from the SWNTs with high controllability and purity based on this novel method,and the outcome is characterized by Raman spectrum.Moreover,the organic field effect transistors(OFETs)are fabricated based on the poly(3-hexylthiophene-2,5-diyl)(P3HT),and untreated SWNTs and separated SWNTs(s-SWNTs)are mixed with P3HT,respectively.It could be found that the P3HT/s-SWNT device exhibits a better field effect characteristic compared with the P3HT device.The current on/off ratio is increased by 4 times,the threshold voltage is also increased from-28 V to-22 V,and the mobility is increased from 3×10-3 cm2/Vs to 5×10-3 cm2/Vs.  相似文献   

2.
Pentacene-based organic field effect transistors(OFETs) are fabricated using poly(methyl methacrylate)(PMMA) and polyimide(PI) as gate dielectrics,respectively.The fabricated OFETs exhibit reasonable device characteristics.The field-effect mobility,threshold voltage,and on/off current radio are determined to be 3.214 ×10^-2 cm^2 /Vs,-28 V,and 1 ×10^3 respectively for OFETs with PMMA as gate dielectrics,and 7.306×10^-3cm^2 /Vs,-21 V,and 2 ×10^2 for OFETs with PI.Furthermore,the dielectric properties of gate insulator layer are tested and the dipole effect at the semiconductor/dielectrics interface is also analyzed by a model of energy level diagram.  相似文献   

3.
Delocalized singlet biradical hydrocarbons hold promise as new semiconducting materials for high‐performance organic devices. However, to date biradical organic molecules have attracted little attention as a material for organic electronic devices. Here, this work shows that films of a crystallized diphenyl derivative of s‐indacenodiphenalene (Ph2‐IDPL) exhibit high ambipolar mobilities in organic field‐effect transistors (OFETs). Furthermore, OFETs fabricated using Ph2‐IDPL single crystals show high hole mobility (μh = 7.2 × 10?1 cm2 V?1 s?1) comparable to that of amorphous Si. Additionally, high on/off ratios are achieved for Ph2‐IDPL by inserting self‐assembled mono­layer of alkanethiol between the semiconducting layer and the Au electrodes. These findings open a door to the application of ambipolar OFETs to organic electronics such as complementary metal oxide semiconductor logic circuits.  相似文献   

4.
Performance enhancement of organic field-effect transistors (OFETs) based on solution-processable conjugated polymers (CPs) holds critical significance for the realization of cost-effective commercial applications such as organic light-emitting diode displays. One of the most critical performance parameters is the charge-carrier field-effect mobility (μFET) that is significantly influenced by the molecular arrangement in a CP. In this article, floating film transfer method (FTM) is utilized for the deposition of a CP––defect-free poly(3-hexylthiophene-2,5-diyl) (DF-P3HT)––which results in the formation of aligned supra-molecular assemblies. When applied as the active layer in OFET devices, μFET reaching as high as 8.0 cm2/V.s (6.3 cm2/V.s on average) is obtained. The value of μFET observed in the current study is the highest value reported so far for P3HT based OFETs (∼5 times higher as compared to when DF-P3HT is deposited using spin coating).  相似文献   

5.
This Full Paper focuses on the preparation of single‐walled or multi‐walled carbon nanotube solutions with regioregular poly(3‐hexylthiophene) (P3HT) and a fullerene derivative 1‐(3‐methoxycarbonyl) propyl‐1‐phenyl[6,6]C61 (PCBM) using a high dissolution and concentration method to exactly control the ratio of carbon nanotubes (CNTs) to the P3HT/PCBM mixture and disperse the CNTs homogeneously throughout the matrix. The CNT/P3HT/PCBM composites are deposed using a spin‐coating technique and characterized by absorption and fluorescence spectroscopy and by atomic force microscopy to underline the structure and the charge transfer between the CNTs and P3HT. The performance of photovoltaic devices obtained using these composites as a photoactive layer mainly show an increase of the short circuit current and a slight decrease of the open circuit voltage which generally leads to an improvement of the solar cell performances to an optimum CNT percentage. The best results are obtained with a P3HT/PCBM (1 : 1) mixture with 0.1 wt % multi‐walled carbon nanotubes with an open circuit voltage (Voc) of 0.57 V, a current density at the short‐circuit (Isc) of 9.3 mA cm–2 and a fill factor of 38.4 %, which leads to a power conversion efficiency of 2.0 % (irradiance of 100 mW cm–2 spectroscopically distributed following AM1.5).  相似文献   

6.
The paper reports on a comparative study of poly(3-hexylthiophene) (P3HT) films as well as P3HT organic field effect transistors (OFETs) fabricated by the spin coating and spray coating techniques, using fresh and aged (for 2 months) chloroform solutions. The films obtained from aged solutions contain nanostructured fibers of the polymer. The presence of nanofibers in P3HT thin films affects the performance of the OFETs: charge carrier mobilities in the samples deposited from the aged solutions appeared over one order of magnitude higher than those fabricated using fresh solutions. Particularly high mobilities, exceeding 10−2 cm2 V−1 s−1, were found in spin coated samples deposited from aged solutions. Additionally, the latter samples exhibit a certain degree of anisotropy, associated with the action of centrifugal force during the deposition.  相似文献   

7.
The correlation between morphology and optoelectronic performance in organic thin‐film transistors based on blends of photochromic diarylethenes (DAE) and poly(3‐hexylthiophene) (P3HT) is investigated by varying molecular weight (Mw = 20–100 kDa) and regioregularity of the conjugated polymer as well as the temperature of thermal annealing (rt‐160 °C) in thin films. Semicrystalline architectures of P3HT/DAE blends comprise crystalline domains, ensuring efficient charge transport, and less aggregated regions, where DAEs are located as a result of their spontaneous expulsion from the crystalline domains during the self‐assembly. The best compromise between field‐effect mobility (μ) and switching capabilities is observed in blends containing P3HT with Mw = 50 kDa, exhibiting μ as high as 1 × 10?3 cm2 V?1 s?1 combined with a >50% photoswitching ratio. Higher or lower Mw than 50 kDa are found to be detrimental for field‐effect mobility and to lead to reduced device current switchability. The microstructure of the regioregular P3HT blend is found to be sensitive to the thermal annealing temperature, with an increase in μ and a decrease in current modulation being observed as a response to the light‐stimulus likely due to an increased P3HT‐DAE segregation, partially hindering DAE photoisomerization. The findings demonstrate the paramount importance of fine tuning the structure and morphology of bicomponent films for leveraging the multifunctional nature of optoelectronic devices.  相似文献   

8.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

9.
The effect of passivation with the solution of sodium sulfide (Na2S) in isopropyl alcohol on the room-temperature performance of the GaInAsSb/GaAlAsSb and InAs/InAsSbP photodiodes is investigated. After such a treatment the dark current density of the GaInAsSb/GaAlAsSb photodiodes at a reverse bias of 0.1 V is reduced from 5.5 × 10−2 to 2.1 × 10−3 A/cm2 and a zero-bias resistance-area product (R 0 A) is improved from 1.0 to 25.6 Ω cm2. For the InAs/InAsSbP photodiodes, the dark current density at U = −0.1 V is decreased from 1.34 to 8.1 × 10−1 A/cm2, while the R 0 A value increases from 4.4 × 10−2 to 7.3 × 10−2 Ω cm2. The method offers long-term stability of the photodiode performance.  相似文献   

10.
Measurements have been performed of the carrier concentrations in vacancy-doped Hg1−xCdxTe with x=0.22, 0.29, 0.45, and 0.5. Anneals to establish the carrier concentrations were performed on both the mercury- and tellurium-rich sides of the phase field. When these results were added to earlier data for x=0.2 and 0.4, and assuming that all vacancies are doubly ionized, then vacancy concentrations for all values of x and anneal temperature can be represented by simple equations. On the mercury side of the phase field, the vacancy concentrations varied as 2.50×1023(1−x) exp[−1.00/kT] for low concentrations, and as 3.97×107(1−x)1/3n i 2/3 exp[−0.33/kT] for high concentrations, where ni is the intrinsic carrier concentration. On the tellurium rich side, the vacancy concentrations varied as 2.81 × 1022(1−x) exp[−0.65/kT] for low concentrations and as 1.92×107(1−x)1/3n i 2/3 exp[−0.22/kT] for high concentrations.  相似文献   

11.
We investigated the properties of C60-based organic field-enect transistors(OFETs)(?) a pentacene passivation layer inserted between the C60 active layer and the gate dielectric.After modification of the pentacene passivation layer,the performance of the devices was considerably improved compared to C60-based OFETs with only a PMMA dielectric.The peak field-effect mobility was up to 1.01 cm2/(V·s) and the on/off ratio shifted to 104.This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs.  相似文献   

12.
Mid wavelength infrared p-on-n double layer planar heterostructure (DLPH) photodiodes have been fabricated in HgCdTe double layers grown in situ by liquid phase epitaxy (LPE), on CdZnTe and for the first time on CdTe/sapphire (PACE-1). Characterization of these devices shed light on the nature of the material limits on device performance for devices performing near theoretical limits. LPE double layers on CdZnTe and on PACE-1 substrates were grown in a horizontal slider furnace. All the photodiodes are p-on-n heterostructures with indium as the n-type dopant and arsenic the p-type dopant. Incorporation of arsenic is via implantation followed by an annealing step that was the same for all the devices fabricated. The devices are passivated with MBE CdTe. Photodiodes have been characterized as a function of temperature. R0Aimp values obtained between 300 and 78K are comparable for the two substrates and are approximately a factor of five below theoretical values calculated from measured material parameters. The data, for the PACE-1 substrate, indicates diffusion limited performance down to 110K. Area dependence gives further indications as to the origin of diffusion currents. Comparable R0Aimp for various diode sizes indicates a p-side origin. R0A and optical characteristics for the photodiodes grown on lattice-matched CdZnTe substrates and lattice mismatched PACE-1 are comparable. Howover, differences were observed in the noise characteristics of the photodiodes. Noise was measured on 50 × 50 μm devices held under a 100 mV reverse bias. At 110K, noise spectrum for devices from the two substrates is in the low 10−15 A/Hz1/2 range. This value reflects the Johnson noise of the room temperature 1010 Ω feedback resistor in the current amplifier that limits the minimum measurable noise. Noise at 1 Hz, −100 mV and 120K for the 4.95 μm PACE-1 devices is in the 1–2 × 10−14 A/Hz1/2, a factor of 5–10 lower than previously grown typical PACE-1 n+-on-p layers. Noise at 120K for the 4.60 μm PACE-1 and LPE on CdZnTe was again below the measurement technique limit. Greatest distinction in the noise characteristics for the different substrates was observed at 163K. No excess low frequency noise was observed for devices fabricated on layers grown by LPE on lattice-matched CdZnTe substrates. Photodiode noise measured at 1Hz, −100 mV and 163K in the 4.60 μm PACE-1 layer is in the 1–2×10−13 A/Hz1/2, again a factor of 5–10 lower than previously grown PACE-1 n+-on-p layers. More variation in noise (4×10−13−2×10−12 A/Hz1/2) was observed for devices in the 4.95 μm PACE-1 layer. DLPH devices fabricated in HgCdTe layers grown by LPE on lattice-matched CdZnTe and on lattice-mismatched PACE-1 have comparable R0A and quantum efficiency values. The distinguishing feature is that the noise is greater for devices fabricated in the layer grown on lattice mismatched substrates, suggesting dislocations inherent in lattice mismatched material affects excess low frequency noise but not zero bias impedance.  相似文献   

13.
Direct current measurements are performed up to 673K at circular and linear (shown in parenthesis) enhancement-mode metal oxide semiconductor field effect transistors (MOSFETs). These devices are fabricated on a p-type 6H-SiC epitaxial layer with a doping concentration NA ≈ 1 × 1016 cm−1. The n+ source/drain regions and the p+ regions for the channel stops are achieved by ion implantation of nitrogen and aluminum, respectively. Both MOSFET geometries show excellent output characteristics with a good saturation behavior even at elevated temperatures. The inversion layer mobility μn extracted in the linear region is 38 cm2·V−1·s−1 (35 cm2·V−1·s−1) and reveals a weak dependence on temperature with a maximum of 46 cm2·V−1·s−1 (42 cm2·V−1·s−1) at about 473K. Regarding the transfer characteristics, the drain current ID can be well modulated by the gate-source voltage VGS resulting in an Ion/Loff-ratio of 108 (108) at 303K and 105 (106) at 673K. In the subthreshold regime, ID can be pinched off well below 10 pA with a subthreshold swing of 150 mV/decade (155 mV/decade) at room temperature. The threshold voltage VT as a function of temperature shows two linear sections with negative temperature coefficients of −6.8 mV·K−1 (−6.8 mV·K−1) from 303 to 423K and −2.5 mV·K−1 (−2.0 mV·K−1) from 423 to 673K. By measuring VT as a function of bulk-source voltage VBS at different temperatures, NA can be directly estimated at a transistor and gives 9.6 × 1015 cm−3 (9.8 × 1015 cm−3). The measured bulk Fermi potential Φf of the p-type epitaxial layer deviates less than 10% from the calculated value at a given temperature.  相似文献   

14.
Field‐effect transistor memories usually require one additional charge storage layer between the gate contact and organic semiconductor channel. To avoid such complication, new donor–acceptor rod–coil diblock copolymers (P3HT44b‐Pison) of poly(3‐hexylthiophene) (P3HT)‐block‐poly(pendent isoindigo) (Piso) are designed, which exhibit high performance transistor memory characteristics without additional charge storage layer. The P3HT and Piso blocks are acted as the charge transporting and storage elements, respectively. The prepared P3HT44b‐Pison can be self‐assembled into fibrillar‐like nanostructures after the thermal annealing process, confirmed by atomic force microscopy and grazing‐incidence X‐ray diffraction. The lowest‐unoccupied molecular orbital levels of the studied polymers are significantly lowered as the block length of Piso increases, leading to a stronger electron affinity as well as charge storage capability. The field‐effect transistors (FETs) fabricated from P3HT44b‐Pison possess p‐type mobilities up to 4.56 × 10?2 cm2 V?1 s?1, similar to that of the regioregular P3HT. More interestingly, the FET memory devices fabricated from P3HT44b‐Pison exhibit a memory window ranging from 26 to 79 V by manipulating the block length of Piso, and showed stable long‐term data endurance. The results suggest that the FET characteristics and data storage capability can be effectively tuned simultaneously through donor/acceptor ratio and thin film morphology in the block copolymer system.  相似文献   

15.
The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dBn s −0.5 due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).  相似文献   

16.
High hole concentrations in LP-MOVPE grown GaAs and AlGaAs layers can be achieved by intrinsic C-doping using TMGa and TMAl as carbon sources. Free carrier concentrations exceeding 1020 cm−3 were realised at low growth temperatures between 520–540°C and V/III ratios <1.2. The C-concentration increases significantly with the Al-content in AlxGa1−xAs layers. We observed an increase in the atom- and free carrier concentration from 5·1019 cm−3 in GaAs to 1.5·1020 cm−3 in Al0.2Ga0.8As for the same growth conditions. Interband tunneling devices with n-type Si and p-type C-doped AlGaAs layers and barriers made of Al0.25Ga0.26In0.49P have been investigated.  相似文献   

17.
It has been reported that performance of bulk heterojunction organic solar cells can be improved by incorporation of an additive like metal and semiconducting nanoparticles in the active layer. Here in, we have synthesized Cu2S nanocrystals (NCs) by chemical route and studied its dispersion in poly (3-hexylthiophene) [6, 6]-phenyl C61-butyric acid methyl ester (P3HT: PCBM) matrix. Variation in the performance parameters with change in the concentration of Cu2S NCs into the P3HT: PCBM matrix has also been studied and it was found that the inverted geometry device with concentration of 20 wt% of Cu2S NCs and having the structure ITO/ZnO (NPs)/P3HT: PCBM:Cu2S NCs/MoO3/Al has shown maximum efficiency of 3.39% which is more than 100% increase in comparison with devices without Cu2S NCs. Photoluminescence measurements studies unveiled that the incorporation of Cu2S NCs into a P3HT: PCBM matrix has helped in quenching photoluminescence which suggests more effective exciton dissociation at the interfaces between the P3HT and PCBM domains. The Nyquist plots obtained from impedance spectroscopy at 1 V bias in the dark has suggested the effective lifetime and global mobilities for P3HT: PCBM as 0.267 ms and 1.17 × 10−3 cm2/V-S and for P3HT: PCBM:Cu2S NCs (20 wt%) systems as 0.156 ms and 2.02 × 10−3 cm2/V-S respectively. Based on observed photoluminescence quenching, calculated effective lifetime and global mobility, we have tried to explain the possible reason for improvement in the efficiency with the very well dispersion of Cu2S NCs into the P3HT: PCBM matrix.  相似文献   

18.
The effects of microvoid defects on the performance of mid-wavelength infrared (MWIR) HgCdTe-based diodes were examined. Molecular beam epitaxy (MBE) was utilized to deposit indium-doped, Hg0.68Cd0.32Te on 2 cm × 3 cm, (211)B-oriented, bulk Cd0.96Zn0.04Te substrates. These epilayers generally exhibited state-of-the-art material properties with a notable exception: high and nonuniform microvoid defect densities (mid 104 cm−2 to low 106 cm−2). Diodes were fabricated by ion implantation of arsenic to form planar pn junctions. Dark current–voltage (IV) curves were measured and analyzed as a function of operating temperature. There was an inverse correlation between wafer-level microvoid defect density and device operability. On each wafer, devices with the smallest implants exhibited higher operability than devices with larger implants. By removal of pad metal and examination of defects within each implant area, it was found that the presence of one or more microvoids within the junction usually caused tunneling or other high-current mechanisms. Diodes free from microvoids exhibited diffusion-limited behavior down to 150 K, the test set limit.  相似文献   

19.
We performed thermoelectric characterizations on TlCu3Te2: (Tl1+)(Cu1+)3 (Te2−)2 and TlCu2Te2: (Tl1+)(Tl3+)(Cu1+)4(Te2−)4, in order to understand the relationship between the thermoelectric properties (especially the lattice thermal conductivity κ lat) and the valence states of Tl. The thermal conductivity of TlCu2Te2 is high (about 8 W m−1 K−1), while that of TlCu3Te2 is extremely low (around 0.5 W m−1 K−1) like other thallium tellurides. This high κ of TlCu2Te2 was caused not only by its large electronic contribution but also by its intrinsically high κ lat. The present study implies that the valence states of Tl would play some important roles in determining the magnitude of κ lat.  相似文献   

20.
In this work we present the electrical characterization of ZnO-based thin-film transistors fabricated at room temperature. The ZnO films were deposited by radiofrequency magnetron sputtering at variable argon pressure (3 mTorr to 10 mTorr) at room temperature. The sputtered ZnO films were polycrystalline with hexagonal structure and electrical resistivity ranging from 101 Ω cm to 108 Ω cm for films deposited from 3 mTorr to 10 mTorr. The trend in the electrical behavior of the devices was found to be due to the variation of the electron concentration of the ZnO films. The devices with better performance showed a field-effect mobility of 2.9 cm2/Vs, threshold voltage of 20 V, I on/I off ≈ 106, and electrical resistivity of ~108 Ω cm. In addition, linear behavior of I on/I off with deposition pressure was observed. The lowest I on/I off ratio (~2) was calculated for devices with ZnO layers deposited at 3 mTorr, and the highest ratio (~106) for devices processed at 10 mTorr. Hall-effect measurements were performed on ZnO films showing the lowest resistivity. The layer grown at 3 mTorr showed a Hall mobility of μ H = 8.9 cm2/Vs and carrier concentration of n = 4.2 × 1016 cm−3 with resistivity of ρ = 31.8 Ω cm. For films deposited at 5 mTorr, the Hall mobility, carrier concentration, and resistivity were μ H = 7.9 cm2/Vs, n = 3.4 × 1016 cm−3, and ρ = 38.4 Ω cm, respectively. Films deposited at 8 mTorr and 10 mTorr could not be measured due to their high resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号