首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用ANSYS建立某型加工中心立柱的有限元模型,以立柱的极限工况为条件,进行有限元静力分析和模态分析,从而对立柱的动静态特性进行分析;利用功效函数法对各优化目标进行折衷处理,建立静刚度和前两阶固有频率最大化的多目标拓扑优化数学模型,并利用ANSYS对立柱进行多目标拓扑优化分析,依据分析得到的立柱密度云图和立柱设计经验,改进原立柱结构,再将改进后的立柱进行有限元分析验证表明:改进后的立柱质量有所减小,动静态特性也得到显著改善。  相似文献   

2.
以多工况下的应变能和结构振动固有频率为优化目标函数,对龙门导轨磨床立柱进行多目标拓扑优化。将质量小于1.3t做为约束函数,得到最佳质量分布云图,根据质量分布云图重新对立柱部件进行结构设计,再对新立柱做进一步的多目标参数优化,采用同样的约束函数和目标函数完成尺寸优化。优化结果表明,质量减少18%,最大总位移减少6.7%,第一阶固有频率提高11%。实现了在减少材料使用的情况下提高立柱动静态特性的轻量化设计目标。  相似文献   

3.
立柱是立式加工中心的重要支承件,其性能对机床的加工质量、可靠性以及稳定性等指标具有显著的影响。以Solid Works软件建立某立式加工中心立柱的实体模型,应用ANSYS Workbench软件对其在典型工况下进行静力学分析、模态分析与谐响应分析。分析结果与模态分析结果相吻合,1、2阶固有频率较低,容易出现共振,有必要对其结构进行优化。运用折衷规划法和平均频率法建立立柱动静态特性的联合拓扑优化数学模型,利用ANSYS软件对其结构进行多目标拓扑优化设计,从而为提高加工中心动静态性能和减重提供技术途径。  相似文献   

4.
对MM52160龙门导轨磨床的立柱部分进行结构拓扑优化.建立立柱三维模型,对其进行静力学分析和模态分析.在原有模型不改变质量的情况下进行简化模型,结果表明:简化模型比原模型的最大静态位移减小了2.42 μm,第一阶固有频率提高了2.85%.对篱化模型进行拓扑优化,查看材料分布.对优化后的结构进行动静态刚度分析,分析结果表明:优化后的结构对比原模型后最大静态位移减小了0.81 μm,第一阶固有频率提高了3.72%,质量减少了15%.通过结构拓扑优化,优化后的结构动静态刚度提高了,质量减少了.  相似文献   

5.
以某型机床立柱为研究对象,开展了立柱结构的轻量化研究工作。首先,利用Hyperworks软件对立柱结构进行静态和动态特性分析,得到立柱在切削力工况下的应力、变形位移云图、固有频率、振型以及频率位移响应曲线;然后,采用变密度法以柔度最小为目标函数进行拓扑优化,根据拓扑优化云图得到立柱内壁的筋条排布形式;接着,提取加筋板的中面并建立2D模型,进行尺寸优化设计,得到加筋板的最优厚度尺寸;最后,将优化模型与原模型进行力学性能对比分析。优化结果显示:基于拓扑优化方法的机床立柱可在减轻重量的同时提高其静、动态特性。  相似文献   

6.
为满足池边检查主工作平台轻量化设计的要求,采用多目标拓扑优化理论,对池边检查主工作平台进行结构优化设计。首先,运用线性加权法,将结构柔度最小和固有频率最大的多目标拓扑优化模型转化为单目标拓扑优化模型;然后,使用HyperWorks的OptiStruct模块进行粗拓扑优化设计;进一步,在粗拓扑优化的基础进行精细拓扑优化设计;最后,对优化前后主工作平台的动静态特性进行评价分析。优化结果表明,在保持主工作平台动静态特性基本稳定的情况下,主工作平台重量减小了4.9%。  相似文献   

7.
拓扑优化在XH786A机床立柱结构优化中的应用   总被引:2,自引:0,他引:2  
立柱作为XH786A高速加工中心的主要零件,其结构设计影响着机床的动态特性.依据连续体拓扑优化理论,提出了以体积为约束条件,机床的前三阶固有频率为目标函数,考虑非设计区域的拓扑优化方法.运用该方法对立柱结构进行优化,比较结果其动、静态特性有较大提高.表明拓扑优化结果具有理论指导意义,为后续详细的设计提供理论依据.  相似文献   

8.
以提高某型加工中心立柱的动态特性为目的,对立柱进行了有限元模态分析和谐响应分析,依据立柱的前5阶模态振型和固有频率及立柱的位移-频率响应曲线,对立柱的动态特性进行分析。运用ANSYS对立柱进行拓扑优化分析,依据分析得到的立柱结构材料最佳分布和立柱设计经验,改进原立柱结构,再将改进后的立柱进行有限元分析验证。结果表明:立柱前5阶模态固有频率提高,位移-频率响应峰值减小,立柱的动态特性得到显著改善。  相似文献   

9.
为实现动态多目标下的拓扑优化结构设计,以结构动柔顺度最小化和固有频率最大化加权函数为目标,提出基于双向渐进结构优化方法(Bi-direction Evolutionary Structural Optimization, BESO)的连续体结构动态特性多目标拓扑优化方法。基于等效静载荷法(Equivalent Static Loads, ESL),将结构动刚度优化问题转化为多工步载荷作用下的线性静刚度优化问题,结合BESO方法实现结构多工况线性静态优化。分别归一化目标函数和灵敏度,避免不同性质目标函数及灵敏度的量级差异引起的数值奇异性。数值算例结果表明,结构体积约束、频率与动柔顺度综合目标均能渐进收敛于最优目标值,优化结构具有清晰的拓扑构型。随着柔顺度灵敏度、权重因子的减小,优化结构拓扑形式发生显著变化,其动刚度逐渐减小,而固有频率逐渐增加。所提出的频率-动刚度多目标拓扑优化方法能够提高结构动态特性,拓展了BESO方法对结构动力学拓扑优化问题的应用范围。  相似文献   

10.
基于拓扑优化的机床立柱筋板改进   总被引:4,自引:0,他引:4  
在拓扑优化的基础上,提出根据拓扑优化结果改进筋板布局的方法,并结合案例,构造了基于相对密度法的连续体结构动力学拓扑优化设计数学模型,以结构的相对密度为设计变量,分别以柔度最小化、一阶固有频率最大化为目标和两者结合的多目标进行拓扑优化。在采用多目标优化时,对两个目标用加权和方法进行折衷处理,通过设置权值来确定两者在优化中所起作用大小。优化后得出不同的密度云图,根据密度云图所示材料分部,改进筋板布局,达到提高机床动、静态特性的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号