首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 216 毫秒
1.
为了考察充水比对新型UniFed SBR工艺脱氮的影响,试验采用充水比分别为25%和42%的2个并行的UniFed SBR反应器,并以实际生活污水为处理对象,通过比较在6组相同的进水ρ(C)/ρ(N)比,TN在2个充水比条件下1个完整周期中的降解规律及出水TN质量浓度,分析了充水比对进水/排水阶段和曝气阶段TN去除的影响.试验结果表明,UniFed SBR工艺在任意一个充水比下运行时,都存在一个与之相对应的进水/排水阶段最大脱氮率η_(1max),η_(1max)只与充水比有关,而与进水ρ(C)/ρ(N)比无关,且在进水碳源充足时,充水比越大,η_(1max)越低;在相同进水ρ(C)/ρ(N)比时,充水比越大,曝气阶段由SND产生的脱氮率η_2越高.由于进水/排水阶段对UniFed SBR工艺TN的去除贡献更大,因此采用较小的充水比,更有利于工艺整体对TN的去除.  相似文献   

2.
进水COD及投加方式对A2O-BAF工艺反硝化聚磷的影响   总被引:1,自引:0,他引:1  
为了提高系统的反硝化除磷脱氮效率及碳源可利用性,主要研究了进水COD及投加方式对A2O-BAF工艺反硝化聚磷的影响.试验设计了不同的进水ρ(C)/ρ(P)(25 ~71)及COD投加方式(1次投加、3次投加、连续投加),分别考察各污染物的去除规律.试验结果表明:当ρ(C)/ρ(P)≤34时,A2O中出现磷和硝态氮的累积,去除效果恶化;当45≤ρ(C)/ρ(P)≤59时,磷的去除率稳定在90%左右,出水ρ(P)低于0.5 mg·L-1;当ρ(C)/ρ(P)≥63时,磷的去除率随ρ(C)/ρ(P)的增加而下降.当ρ(C)/ρ(P)≥39时,ρ(C)/ρ(P)的变化对COD和TN去除率影响不大,平均去除率分别高于83%和76%;当ρ(C)/ρ(P) =57时,系统处理效果最佳.相同质量浓度的COD,连续投加的方式可以提高碳源的可利用性,增加厌氧释磷量,提高缺氧反硝化除磷脱氮速率.  相似文献   

3.
分点进水频繁曝气SBR工艺将分点进水和频繁曝气技术手段相结合,促进硝化菌、聚磷菌等目的菌群的增殖优势,提高处理污水的能力.实验考察不同进水方式、不同进水比例对系统除磷脱氮效率的影响.结果表明,进水方式及进水比例(厌氧段进水量/频繁曝气段进水量)对系统除磷脱氮效率有着明显的影响.在进水比例0.4/0.6,仅在厌氧段和缺氧段进水的条件下,实验系统除磷脱氮能力最强.在最佳进水方式条件下,通过考察系统在不同泥龄、ρ(C)/ρ(N)、ρ(C)/ρ(P)下的除磷脱氮效率,发现系统在泥龄为10 d和5 d时的除磷脱氮效果相对较好,NH 4+-N、TN、TP去除率可达97%、87%、99%左右;而当ρ(C)/ρ(N)为20时系统的除磷脱氮能力最佳,CODCr、TN、TP去除率为95%、92%、99%;当ρ(C)/ρ(P)为88.9时系统的CODCr、TN、TP去除率分别达97%、89%、99%.  相似文献   

4.
A^2O工艺处理生活污水反硝化除磷研究   总被引:1,自引:0,他引:1  
采用A2O工艺处理低ρ(C)/ρ(N)实际生活污水,研究其脱氮除磷性能和反硝化除磷特性.试验结果表明:处理低ρ(C)/ρ(N)实际生活污水时,在不设置预缺氧区、无外加碳源的情况下,A2O工艺的脱氮除磷能力受到严重影响,出水ρ(NO3--N)高达35 mg/L,TN平均去除率仅为47.1%;此时A2O工艺除磷能力较差,缺氧段有释磷现象的发生.当设置预缺氧区后,A2O工艺的脱氮除磷能力明显提高,TN平均去除率可达60.7%,PO43--P平均去除率为55.9%;此时系统存在反硝化除磷现象,缺氧段除磷率为31.4%~46.9%.在设置预缺氧区的基础上,通过外加碳源,提高进水ρ(C)/ρ(N),可进一步提高系统的脱氮除磷能力,TN平均去除率可达74.4%,出水ρ(PO34--P)小于0.5 mg/L,缺氧段除磷率高达66.2%~90.9%.同时研究了外加碳源情况下污泥内PHA成分、含量及糖原含量在A2O系统内的沿程变化趋势.经过驯化、富集,反硝化聚磷菌相对于全部聚磷菌的代谢活性从31.1%提高到74.7%.A2O工艺反硝化除磷能力的增强,提高了碳源的利用效率.  相似文献   

5.
针对污水处理厂目前普遍存在碳源不足和剩余污泥量过大的问题,以某小区低ρ(C)/ρ(N)比生活污水为研究对象,构建了多级好氧缺氧生物膜反应器,考察了反应器脱氮、污泥减量效果及运行工况.试验表明反应器最优运行工况:流量分配比为3∶4∶3,HRT为11h,ρ(DO)为4.0 mg/L,温度为25℃,回流比R=1.0.在上述工况下,当进水ρ(TN)、ρ(NH4+-N)、ρ(COD)分别为80 ~ 130、75 ~ 100、260 ~ 400 mg/L时,ρ(TN)出水约20 mg/L,ρ(NH4+-N)、ρ(COD)出水分别降至5.0、30 mg/L以下,TN、NH4+-N、COD平均去除率分别达到80%、95%、91%.多级好氧缺氧试验同时表明:反应器中的污泥产率仅为0.10,优于其他生物膜工艺,具有良好的污泥减量效果.  相似文献   

6.
为了探究磷冲击负荷对活性污泥系统特性的影响,采用厌氧-好氧运行的SBR进行试验,通过改变进水磷含量,研究了在进水碳磷比(质量浓度的比)为330/8、330/12、330/16和330/20的条件下活性污泥系统的污染物去除特性、污泥沉降性等方面的表现。结果表明:碳磷比降低会强化聚磷菌活性,改善污泥沉降性,显著提高系统的脱氮除磷性能。当进水碳磷比由330/8改变至330/20时,系统好氧段比吸磷量由9.502 mg/g增加到了17.764 mg/g,提升了86.95%。在磷浓度升高冲击作用下,聚磷菌厌氧释磷会吸收更多的有机物,试验出水水质得到提升。厌氧期间pH值下降速率与释磷速率显著相关(R2为0.667),pH值曲线反映了系统中厌氧生物呼吸的特征。氧化还原电位(ORP)在厌氧阶段不断下降,在好氧阶段出现了2个平台期,通过在线监测ORP变化可以指示出PO43--P的质量浓度变化过程,并可确定厌氧释磷结束的时间点。在进水化学需氧量(COD)不变时,提高进水磷浓度可以使微生物活性增强,污泥沉降性能和系统脱氮除磷性能提高,给活性污...  相似文献   

7.
通过调节进水ρ(P)ρ/(C)的不同水平(2.9/100、1.4/100、0.57/100、0.29/100、1.4/100和2.9/100),考察了A/O-SBR系统强化生物除磷效果的动态变化;同时利用PCR-DGGE分子生物学技术,研究了聚磷菌和聚糖菌种群的竞争与演变.结果表明,当ρ(P)ρ/(C)逐渐降低时(2.9/100→1.4/100→0.57/100→0.29/100),吸收单位碳源的厌氧释磷量逐渐降低,而胞内糖原量逐渐升高.相应的DGGE图谱显示,微生物类群在ρ(P)/ρ(C)降低过程由11 OTUs升高到14 OTUs,最后降至7 OTUs;结合生化指标判断,系统优势菌种呈现的是从聚磷菌占优势、聚糖菌聚磷菌共存到聚糖菌占优势的动态变化.随后,提高进水ρ(P)ρ/(C)值从0.29/100到1.4/100再到2.9/100,污泥吸收单位碳源的厌氧释磷量逐渐升高,而胞内糖原量逐渐降低.这说明当聚糖菌占优势以后,通过调节ρ(P)ρ/(C)可重新培养获得聚磷菌优势系统,但DGGE图谱也显示,此时的聚磷菌优势种群较聚糖菌系统的优势种群已有较大变化,且与先前聚磷菌系统的优势种群也不尽相同.  相似文献   

8.
梯度曝气SBR除磷亚硝化颗粒处理生活污水   总被引:1,自引:0,他引:1  
为实现生活污水中总磷和有机物的去除,同时实现部分亚硝化,在常温条件下(17~19℃),采用SBR反应器接种配水培养的强化生物除磷颗粒污泥,对生活污水的除磷亚硝化效果进行研究.结果表明,配水启动的强化生物除磷颗粒污泥经过27 d的培养可以实现生活污水除磷,出水总磷(TP)质量浓度达到1 mg/L以下,厌氧释磷量/厌氧COD去除量(Δρ_(TP)/Δρ_(COD))达到0.3;采取前90 min高曝气(500 mL/min),后120 min低曝气(200 mL/min)的梯度曝气运行模式,可以使亚硝酸盐积累率(R_(NA))从0增长到90%以上,亚硝酸盐氮(NO~-_2-N)质量浓度达到10 mg/L,同时TP及COD出水分别保持在0.5和50 mg/L以下.随工艺运行颗粒粒径从1 200μm下降到1 090μm,SVI值从32 mL/g降低到29 mL/g,蛋白与多糖比(PN与PS比)从2.0降低到1.2.生活污水虽然会导致颗粒粒径略微减小,但仍能保持在1 000μm以上,且使颗粒获得更好的沉降性能.采取高低梯度曝气方式可以实现除磷和亚硝化,总磷去除率达到95%,R_(NA)达到90%以上,且颗粒性能稳定.  相似文献   

9.
为了了解SBR强化生物除磷(EBPR)颗粒污泥系统的影响因素,为颗粒污泥生物除磷工艺的实际应用提供技术支持,采用有效容积为12 L的SBR反应器,以乙酸钠为碳源、KH2PO4为磷源,对EBPR颗粒污泥系统的启动和除磷性能及污泥颗粒化过程进行研究.结果 表明:若进水碳磷比过低(C∶ P=200∶ 15),除磷效率较低.与...  相似文献   

10.
针对目前国内外对分段进水工艺的研究只是停留在过程仿真或对模拟生活污水的研究阶段,通过采用城市污水对该工艺的运行特性与优化控制进行了较详尽的基础研究.通过3个阶段试验,比较了不同ρ(C)/ρ(N)对提高分段进水A/O工艺脱氮效率的影响,对优化控制运行该工艺提供了理论基础.  相似文献   

11.
为了探讨碳氮比(ρ(C)/ρ(N))在反硝化过程中对于亚氮积累的影响,采用乙酸钠为碳源,在序批式实验中,通过控制进水碳氮比来研究反硝化包埋颗粒在反应过程中亚硝态氮积累的现象.实验结果表明:在反应过程中,不同的碳氮比条件下均出现亚硝态氮积累现象,且亚硝态氮积累率都表现出先升高后降低的趋势.其中,碳源充足(碳氮比为4.0~6.0)时,亚硝态氮积累率在30 min时达到最大,随后逐渐降低,反应结束时在碳氮比为4.0条件下仍有亚氮积累;当碳源不足(碳氮比为2.0~3.0)时,亚硝态氮的积累率在120 min达到最大,而后基本维持不变,说明可以通过控制碳氮比和反应时间来获得稳定的亚硝态氮积累.硝态氮和亚硝态氮的还原速率随着碳氮比的增加而逐步升高,而亚硝态氮的最大积累率与积累速率随着碳氮比的增加先升高后降低,在碳氮比为4.0时亚硝态氮的积累率和积累速率均达到最大,分别为40.8%和24.46 mg/(L·h),说明碳氮比对亚硝态氮的积累有显著影响.  相似文献   

12.
碳氮比对生物反硝化中N_2O产量的影响   总被引:1,自引:0,他引:1  
利用间歇式反应器(sequencing batch reactor,SBR),以乙醇作为外加碳源,考察不同化学需氧量(chemicaloxygen demand,COD)与氮的质量浓度的比值对全程和短程反硝化脱氮过程中N2O产量的影响.全程反硝化过程中,调节ρ(COD)/ρ(N)为1.56、2.83、4.56、6.01和10.0,短程反硝化中调节ρ(COD)/ρ(N)为1.51、2.45、3.33、4.13和9.7.结果表明,全程和短程反硝化的最佳ρ(COD)/ρ(N)分别为6.01和4.13,硝酸盐和亚硝酸盐完全被还原,反硝化过程中几乎没有N2O产生,1 g混合液悬浮固体(mixed liquor suspended solids,MLSS)每天还原的硝态氮和亚硝态氮分别可达0.077和0.089 g.在碳源充足的条件下,反硝化速率不再随着有机物的增加而增加.在低ρ(COD)/ρ(N)时,短程反硝化过程中N2O产量远大于全程反硝化过程,最高可达0.607 mg/L.在碳源不足时,亚硝酸盐对氧化亚氮还原酶(N2O reductase,N2OR)的抑制作用和ρ(COD)/ρ(N)不足是影响系统N2O产量增加的主要原因.  相似文献   

13.
SBR法处理低碳源城市污水除磷脱氮效果及规律研究   总被引:6,自引:0,他引:6  
介绍了用SBR法(序批式活性污泥法)处理低碳源城市污水,研究了生物除磷效果和好氧反硝化脱氮效果及其影响因素.试验结果表明,磷的出水质量浓度低于0.8mg/L,去除率达到92%~98%;磷的厌氧释放是好氧吸收的前提条件,而且厌氧释磷量和好氧吸磷量存在线性关系;DO是影响好氧反硝化的主要因素,当DO=2mg/L时,总氮的去除率最大.  相似文献   

14.
为提高三维电极生物膜工艺脱氮效率,通过运行不同TOC与TN的质量浓度比(ρ(C)/ρ(N))条件下三维电极生物膜-硫自养耦合工艺(3BER-S),并建立基于反硝化特异性基因nirS克隆文库,研究了ρ(C)/ρ(N)对3BER-S运行特性及反硝化细菌群落的影响.结果表明:ρ(C)/ρ(N)对3BER-S工艺的脱氮效率影响较小,不同ρ(C)/ρ(N)条件下的TN去除效率基本稳定在80%以上.ρ(C)/ρ(N)对3BER-S体系内的反硝化细菌种群结构和营养类型均有一定影响.高ρ(C)/ρ(N)条件下,反硝化细菌种类较少,Thauera(陶厄氏菌属)是体系内的优势菌群,脱氮作用以异养反硝化过程为主;当ρ(C)/ρ(N)降低时,反硝化细菌种类增多,硫自养反硝化细菌所占比例升高.总之,由于硫磺单质的加入,弥补了3BER工艺低ρ(C)/ρ(N)时的反硝化作用电子供体不足,使得3BER-S耦合体系在不同ρ(C)/ρ(N)条件下均能保持高效且稳定的脱氮效果.  相似文献   

15.
采用MUCT工艺处理低ρ(C)/ρ(N)比实际城市生活污水,研究在短程硝化稳定运行的基础上实现亚硝酸型同步硝化反硝化(simultaneous nitrification and denitrification,SND).反应器在(28±2)℃下运行177 d,试验结果表明:通过控制溶解氧(DO)质量浓度为0.3~0.6 mg/L、水力停留时间(HRT)为6 h实现了短程硝化,亚硝酸盐积累率(nitrite accumulation rate,NAR)达到90%以上,短程硝化反硝化稳定运行118 d.在短程硝化的基础上,好氧区低氧运行实现了亚硝酸型SND,通过亚硝酸型SND途径的总氮去除率平均33%,最高达到56%.亚硝酸型SND途径下氨氮、总氮、磷的去除率明显提高,无外加碳源时分别达到99%、83%和96%.因此,MUCT工艺实现亚硝酸型SND是低碳源污水处理的一种有效的运行方式,能充分利用原水中的有机碳源,总氮去除率的提高和碳源的节省保证了磷的去除效果.  相似文献   

16.
亚硝化-反硝化除磷技术研究进展   总被引:2,自引:0,他引:2  
氮磷引起的环境问题已引起世界关注,低成本减少水体氮磷污染是生物处理工艺面临的挑战。亚硝化-反硝化除磷工艺具有节约碳源和能源、节省空间及占地、提高水处理设备利用率、减少污泥产量等优势,但关于聚磷菌( PAOs)的认知缺乏深入了解,且目前尚未见氨氮亚硝化-反亚硝酸除磷整体工艺的稳定运行报道。关于PAOs的分类,不同研究者有不同见解,而短程反硝化除磷机理的研究结果主要是利用厌氧释磷储能,能量用以供给缺氧条件下利用亚硝酸盐为电子受体进行反硝化过量吸磷。短程反硝化除磷的脱氮除磷效果会受到温度、pH、碳源种类及ρ( C)/ρ( P)等诸多因素的影响,调节控制合理的反应条件有助于实现稳定高效的污废水处理效果。总结分析短程反硝化除磷的相关研究报道,对指导污废水生物脱氮除磷并克服其存在的不利因素很有必要。  相似文献   

17.
初沉污泥水解酸化对A~2/O工艺强化除磷影响   总被引:2,自引:1,他引:1  
挥发性脂肪酸(VFA)是生物除磷过程中的关键物质,增加进水中的VFA可以强化生物除磷效果.提高脂肪酸含量的一个有效方法是对初沉污泥进行水解和酸化,通过对比中试试验和实际污水厂的运行结果,详细讨论了初沉污泥水解对进入生化反应系统的进水水质及ρ(VFA)、ρ(C):ρ(P)的影响.结果表明,初沉污泥水解酸化可以改善进水水质,ρ(BOD5)、ρ(CODcr)、ρ(TP)、ρ(sP)、ρ(SS)相对污水厂初沉出水分别提高61.1%、36.5%、36.1%、17.36%和52.0%,可生物化性指标也相应地提高了20.40%.初沉出水VFA有显著提高,平均值由进水的12增加到56,提高了3.7倍,为后续强化生物脱氮除磷创造了理想的条件.通过初沉污泥水解实现的污泥水解技术,可用于现有污水处理厂为实现生物脱氮除磷目标而实施的升级改造,解决进水中碳源不足的难题.  相似文献   

18.
强化序批式活性污泥工艺脱氮除磷的实验研究   总被引:1,自引:0,他引:1  
采用强化序批式活性污泥(SBR)工艺进行废水处理,实验考察了各阶段运行时间、碳氮比等对化学需氧量、氮磷去除率的影响.确定了强化SBR工艺最佳运行方式为:进水搅拌1 h,曝气5 h,停曝搅拌2 h,沉淀2 h,一个工艺周期为10 h,碳氮比为18.当进水总磷为10 mg/L-1,氨氮为100 mg/L-1时,氨氮和总磷的去除率分别达85%及78%;与普通SBR工艺相比,强化SBR工艺的氨氮和总磷去除率分别提高约13%及12%.结果表明,强化SBR工艺在进水搅拌阶段使磷得到了充分释放;在停曝搅拌阶段混合液得到了充分的反硝化,提高了脱氮效果,同时由于抑制了聚磷菌释放磷而提高了除磷效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号