首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, CuInSe2 based flexible photovoltaic cells have been fabricated completely using non-vacuum low-cost techniques. Thin films were deposited on molybdenum thin foil substrates by electrodeposition using a buffered aqueous electrolyte with the deposition of subsequent layers performed by spray pyrolysis. In addition, the buffer layer CdS was replaced with a wider bandgap ZnS (3.7 eV) and analysis undertaken of the fabrication pathway, morphological and compositional changes resulting from the different precursor route. The deposited films were annealed in a Se atmosphere at 450 °C. The influence of annealing temperature and time on the properties of the films are briefly discussed. Characterisation of thin films was performed using aqueous electrolyte contacts. Capacitance measurements were made as a function of applied bias on thin films deposited on metal substrates with blocking electrolyte contacts where analysis of the impedance gave values of the space charge capacitance from which the doping density and flat band potential were derived. The structural characterisation was carried out using X-ray diffraction and Raman spectroscopy. The structure and device properties of Mo (SS)/CuInSe2/ZnS/n+-ZnO/Ni were characterized using current-voltage technique and photocurrent spectroscopy.  相似文献   

2.
Copper bismuth sulfide thin films were deposited at 200 °C, 300 °C, 400 °C and 500 °C on the glass substrates by electron beam evaporation method. X-ray diffraction study revealed that the copper bismuth sulfide films of single and mixed phases were formed as a function of substrate temperatures. Substrate temperature of 300 °C and 400 °C formed single phase Cu4Bi4S9 and Cu4Bi5S10 films respectively whereas substrate temperature of 500 °C formed mixed phases of Cu4Bi4S9 and Cu4Bi5S10 film. Crystallite size, dislocation density and microstrain of the films were modified by the various substrate temperatures. Surface morphology of the film Cu4Bi5S10 deposited at 400 °C examined by scanning electron microscopy showed the distribution of spherical shaped particles on the film surface. The presence of copper, bismuth and sulfur elements in the deposited films was confirmed using energy dispersive spectral studies. The calculated direct optical band gap energy of the films deposited at different substrate temperature varied from 1.47 to 1.64 eV and the absorption coefficient is in the order of 106 cm?1.  相似文献   

3.
The Cu2ZnSnS4 (CZTS) films are successfully prepared using a process of sequentially electrodeposited Cu–Sn–Zn precursors by a novel electrolyte formula and optimized parameters on Mo substrate, succeeded by annealing in saturated sulfur atmosphere. The results show that the Cu/Sn/Zn precursor sequence is strict, and optimized electro-deposition parameters are as follows: ?0.6 V, 5 min for Cu, ?1.2 V, 2 min for Sn, and ?1.35 V, 10 min for Zn. Layered precursors firstly alloy into Cu6Sn5 and CuZn binary phases under low annealing temperature. Then Cu6Sn5 and CuZn alloys decompose in sulfur atmosphere, and form CuS, SnS and ZnS binary phases. Cu2SnS3 ternary phase forms through reaction between CuS and SnS with increasing the temperature. Finally, the CZTS film is synthesized through reaction among binary and ternary sulfides. The photoluminescence peak from the CZTS films synthesized at 550 °C for 1 h is about at 1.49 eV.  相似文献   

4.
Nb2O5:MoO3 (95:5 and 85:15) thin films were deposited onto glass and fluorine doped tin oxide coated glass substrates at 100 and 300 °C by RF magnetron sputtering technique. The physical and electrochromic properties of the films were studied. XRD result reveals that deposited films were amorphous. The XPS study confirms the compositional purity and the presence of Nb5+ and Mo6+ in the deposited film. Surface morphological study shows platelet like features of deposited film. The average transmittance of the film is varied between 91 and 85 %. Photoluminescence study exhibits three characteristic emission peaks and confirms the better optical quality of deposited film. Raman spectra show the LO–TO splitting of Nb–O stretching of the deposited film. Electrochromic behavior of the deposited films characterized by cyclic voltammetry using 0.5 M LiClO4·PC and 0.5 M H2SO4 electrolyte solutions show all the films are having better reversibility and reproducibility in their electrochemical analysis.  相似文献   

5.
CuInSe2 (CIS) thin films were deposited on Mo/glass substrates by one-step electrodeposition from aqueous baths containing CuSO4, In2(SO4)3 and SeO2 with Li2SO4 electrolyte. The quality of the electrodeposited films depended on the presence of pH buffer in the bath. CIS films deposited from non-pH buffered baths showed pronounced (112) orientation, while films exhibiting more random orientation were obtained from pH buffered baths. Denser, smoother samples were obtained from non-pH buffered baths, though with no difference in film composition. As-deposited films exhibit low crystallinity and require recrystallization by annealing in H2Se. Best devices, ∼ 9%, were obtained with CuInSe2 films deposited from non-pH buffered baths.  相似文献   

6.
This study involves the characterization of thin films of copper indium diselenide (CuInSe2) deposited on soda-lime glass substrates using a two-step process. In this technique electron-beam-evaporated Cu-In precursor layers were reacted with an atmosphere containing H2Se gas. The morphological and structural aspects of the CuInSe2 layers were studied (by scanning electron microscopy and X-ray diffraction) as a function of the Cu-In film morphology and the selenization temperature profile and exposure time. It was found that the Cu-In precursor morphology has a significant influence on the structural properties of the final CuInSe2 film. Selenization of the Cu-In alloys (irrespective of the structure considered) directly at high temperature resulted in films with poor structural properties. However, a vast improvement in the adhesion properties and morphology of the CuInSe2 films were observed when the Cu-In films were exposed to a reactive selenium atmosphere while ramping the temperature between 150 C and 400 C. Selenization of triple-layer structures (Cu/In/Cu and In/Cu/In) resulted in films with good structural properties and excellent compositional uniformity.  相似文献   

7.
Cu(InxGa1?x)Se2 (CIGS) thin films were produced using a two-step sputtering process consisting of precursor formation and selenization. In the first stage, we prepared Cu0.75Ga0.25/In bi-layer precursors by direct current sputtering on Mo/soda-lime glass substrates. In the second stage, the stacked precursors were selenized using non-toxic Se pellets in a graphite box in which the temperature was controlled at 475–680 °C during rapid thermal annealing. We investigated the effect of thermal annealing temperature on Ga distribution and the crystallinity of the Cu(InxGa1?x)Se2 films. Thermal annealing significantly affected the distribution of Ga atoms. At low temperatures, segregation of Ga atoms into the CIGS/Mo interface and an absence of Ga content on the surface were observed. In addition, a phase-separated CuInSe2/CuGaSe2 structure and incomplete selenization phases were observed. At high temperatures, CIGS films were formed with the proper distribution of Ga content.  相似文献   

8.
Semiconducting Ag2SeTe thin films were prepared with different thicknesses onto glass substrates at room temperature using thermal evaporation technique. The structural properties were determined as a function of thickness by XRD exhibiting no preferential orientation along any plane, however the films are found to have peaks corresponding to mixed phase. The XRD studies were used to calculate the crystallite size and microstrain of the Ag2SeTe films. The calculated microstructure parameters reveal that the crystallite size increases and micro strain decreases with increasing film thickness. The refractive index, dielectric constants and thereby the optical bandgap of the films were calculated from transmittance spectral data recorded in the range 400?C1200 nm by UV?CVIS-Spectrometer. The direct optical bandgap of the Ag2SeTe thin films deposited on glass substrates with different thicknesses 50?C230 nm were found to be in the range 1.48?C1.59 eV. The carrier density value is estimated to be around 9.8 × 1021 cm?1 for the film thickness of 150 nm. The compositions estimated from the optical band gap studies reveal a value of 0.75 for Tellurium concentration. These structural and optical parameters are found to be very sensitive to the thin film thickness.  相似文献   

9.
Herein, we report on tin monosulfide (SnS) thin films elaborated by the Chemical Spray Pyrolysis (CSP) technique onto various substrates as simple glass, ITO-, and Mo-coated glasses in order to study the influence of substrates on the physical and chemical properties of Sns thin films. Structural analysis revealed that all films crystallize in orthorhombic structure with (111) as the sole preferential direction without secondary phases. In addition, film prepared onto pure glass exhibits a better crystallization compared to films deposited onto coated glass substrates. Raman spectroscopy analysis confirms the results obtained by X-ray diffraction with modes corresponding well to SnS single-crystal orthorhombic ones (47, 65, 94, 160, 186, and 219 cm ?1) without any additional parasite secondary phase like Sn2S3 or SnS2. Field emission scanning electron microscope revealed that all films have a cornflake-like particles surface morphology, and energy dispersive X-ray spectroscopy analysis showed the presence of sulfur and tin with a nearly stoichiometric ratio in films deposited onto pure glass. High surface roughness and large grains are observable in film deposited onto glass. From optical spectroscopy, it is inferred that band gap energy of SnS/glass and SnS/ITO were 1.64 and 1.82 eV, respectively.  相似文献   

10.
Thin films of copper selenide have been deposited by spraying a mixture of aqueous solutions (0.50 M) of copper chloride hydrate (CuCl2·2H2O) and selenourea [H2NC(Se)NH2] on preheated fluorine doped tin oxide coated glass substrates at various substrate temperatures. The cell configurations copper selenide/0.5 M K2SO4/C are used for studying the capacitance–voltage (C–V) characteristics in the dark, current–voltage (I–V) characteristics in dark and under illumination, photovoltaic power output and spectral response characteristics of the as deposited films. Photoelectrochemical study records that as deposited copper selenide thin films are of p-type. The spectral response characteristics of the films at room temperature show a prominent, sharp peak at 550 nm. The measured values of efficiency (η) and fill factor (FF) are found to be 0.99 % and 0.51 respectively for film deposited at 350 °C.  相似文献   

11.
Cu(In, Ga, Al)Se2 (CIGAS) thin films were deposited by magnetron sputtering on Si(100) and soda-lime glass substrates at different substrate temperatures, followed by post-deposition annealing at 350 or 520 °C for 5 h in vacuum. Electron probe micro-analysis and secondary ion mass spectroscopy were used to determine the composition of the films and the distribution of Al across the film thickness, respectively. X-ray diffraction analysis showed that the (112) peak of CIGAS films shifts to higher 2θ values with increasing substrate temperature but remains unchanged when the films were annealed at 520 °C for 5 h. Scanning electron microscopy and atomic force microscopy images revealed dense and well-defined grains for both as-deposited and annealed films. However, notable increase in grain size and roughness was observed for films deposited at 500 °C. The bandgap of CIGAS films was determined from the optical transmittance and reflectance spectra and was found to increase as the substrate temperature was increased.  相似文献   

12.
CuInSe2 films were successfully prepared from the nanoparticles that were synthesized via the chemical reduction reaction. In the chemical reduction process using ethylene glycol as the solvent and NaBH4 as a reducing agent, CuIn and Cu2In phases were detected. Upon increasing the molar ratio of the reducing agent to the metal ions, Cu11In9 and In were formed and coexisted with Cu–In alloys. The obtained nanoparticles were utilized in pastes for coating Cu(In,Ga)Se2 films. The XRD results and Raman spectra elucidated the formation mechanism. During the selenization process, InSe and Cu2?xSe were produced and then reacted with each other to yield CuInSe2. Cu(In,Ga)Se2 was also prepared using the nanoparticles via the reduction reaction. In the route developed herein not only was the temperature of the synthesis of the chalcopyrite compounds reduced to 450 °C, but also the phases of the powders that were used in the synthesis of Cu(In,Ga)Se2 films were controlled.  相似文献   

13.
CuInSe2 thin films one-step electrodeposited under different conditions were studied by MicroRaman spectroscopy to identify and quantify the individual phases present in the films.From the analysis of the Raman spectra, the main ternary phase (CuInSe2) and elementary selenium Se0 were clearly identified. Specific chemical etches confirm the presence of elementary selenium Se0 and copper selenide binary phases CuxSe in selenium rich film.The amounts of these two phases were evaluated from X-ray Fluorescence measurements and confirmed using phase selective chemical treatments.  相似文献   

14.
Sb2Se3 with suitable bandgap and non-toxic, abundant composition represents a promising absorber material as a replacement for Cu2ZnSnS4 and Cu(In,Ga)Se2 for thin film solar cells. In this paper, we investigated the effect of annealing temperature on selenizing metal precursor deposited by sputtering. With optimized temperature, the best performance of the devices achieved the efficiency of 0.72 % with an open circuit voltage of 368 mV. This study provide the guideline to fabricate Sb2Se3 thin film solar cell as the same structure as CIGS.  相似文献   

15.
This study prepared Cu(In,Ga)Se2 (CIGS) thin films on bi-layer Mo coated soda-lime glass, by printing with mixed powders of CIGS quaternary alloy (average partial size of 680 nm) and NaF. A single-stage annealing process was performed to form a CIGS chalcopyrite phase. Experimental results show stoichiometric ratios of Cu/(In+Ga) = 0.94 and Ga/(In+Ga) = 0.26 in the CIGS film. The resistivity of the sample was 12.69 Ω cm, with a carrier concentration of 9.34 × 1016 cm?3, and mobility of 5.27 cm2 V?1 s?1. The CIGS film exhibited p-type conductivity. The incorporation of 1 wt% NaF in the CIGS powder produced a chalcopyrite structure with the best crystalinity. Raman analysis identified a number of phases, including CuInSe2 and CuIn3Se5. The CIGS solar cells with AZO/i-ZnO/CdS/CIGS/Mo/soda-lime glass structure were fabricated. The CIGS thin film solar cells conversion efficiency of 1.23 % on 1 × 1.5 cm2.  相似文献   

16.
Copper–Indium (Cu–In) alloys with sulfur and selenium have technological importance in the development of thin film solar cell technology. We have used potentiostatic electrochemical technique with three-electrode geometry for the deposition of Cu–In alloy thin films in an aqueous electrolyte. Cathodic voltammetry (CV) was thoroughly studied to optimize the electrodeposition parameters. The deposition potential for Cu–In alloy was found to be in the range ?0.70 to ?0.85 V versus Ag/AgCl reference electrode. Polycrystalline CuxIny thin films were electrodeposited from aqueous bath at room temperature and 45 °C. Effect of concentration of citric acid was extensively studied by CV measurements. The as-deposited Cu–In films were characterized with a range of characterization techniques to study the structural, morphological, compositional and electrical properties. Thin layers of Cu–In were selenized in a homemade tubular furnace at 400 °C, which reveals the formation of polycrystalline CuInSe2 (CISe) thin films with tetragonal structure. The band gap of CISe thin film was estimated ~1.05 eV by optical absorption spectroscopy. Nearly stoichiometric CISe thin film, Cu = 25.25 %, In = 26.48 % and Se = 48.27 % was obtained after selenization. The linear behavior of current density–voltage (J–V) was observed for Cu–In alloy thin films whereas, the selenized Cu–In alloy films (CISe) possess rectifying properties.  相似文献   

17.
Cu2ZnSnS4 (CZTS) thin films were deposited by sol–gel spin coating using precursor solutions prepared with copper acetate, zinc acetate, tin chloride, and thiourea in methanol and ethylenediamine followed by sulfurization. Sol–gel precursor solutions were prepared with different amounts of sulfur and copper, and their effects on film growth, crystal properties, and optical properties of CZTS films were investigated. CZTS film thickness increased with the amount of metal salt in the precursor solution. This is attributed to an increase in solution viscosity and a decrease in the solution density/viscosity ratio. All CZTS thin films exhibited kesterite structures with absorption coefficients larger than 104 cm?1 in the visible region. Band gap energy increased with increasing amounts of sulfur and decreasing amounts of copper. The blue shift of the band gap is attributed to changes in the degree of pd hybridization related to Cu d- and S p-levels. The role of sulfur and copper on Hall mobility and carrier concentration was investigated. By optimizing the metal salt ratio in the precursor, CZTS film with a resistivity of 5.3 × 10?2 Ωcm were prepared.  相似文献   

18.
In this paper, Cu2SnS3 (CTS) thin film is fabricated through sulfurization of oxide precursor which is deposited by pulsed laser deposition with a mixed CuO/SnO2 target. XRD and Raman analyses indicate a pure monoclinic Cu2SnS3 phase has been obtained by sulfurization at temperature from 500 to 600 °C. A compact and smooth film with polycrystalline structure is observed through SEM result. In addition, the CTS films show excellent absorbance with the band gap around 0.91 eV estimated by UV–Vis, which is suitable for the absorption layer of solar cells. Final devices were fabricated with a SLG/Mo/CTS/CdS/i-ZnO/AZO/Al structure. Device performance is improved with the temperature increasing. The best efficiency of CTS-based solar cells is 0.69% with an open-circuit voltage of 144 mV and a short-circuit current density of 18.30 mA/cm?2.  相似文献   

19.
In this work Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of spin coated CuO + ZnO precursor films under Sn and S ambience with different time. Precursor films were synthesized using air-stable inks consist of carboxylate-capped metal oxide nanoparticles. The composition, microstructure and properties of CZTS thin films prepared with different sulfurization time were investigated using inductively coupled plasma-mass spectrometry, X-ray diffraction, scanning electron microscopy, Raman spectroscopy and UV–vis–NIR spectroscopy. The inductively coupled plasma-mass spectrometry results show that mole ratios of Zn/Sn and Cu/(Zn + Sn) in the films can be adjusted by controlling sulfurization time. A composition of Cu/Zn + Sn = ~0.8, and Zn/Sn = ~1.2 can be reached after sulfurizating with proper time. The influence of element composition change was also studied in our work using X-ray diffraction and Raman scattering. Two laser sources of 325 and 514 nm were involved in the Raman scattering analyze in order to identify secondary phases such as ZnS and Cu2?xS. The as-prepared CZTS films with a composition of Cu/Zn + Sn = ~0.8, and Zn/Sn = ~1.2 exhibit a direct optical band gap about 1.45 eV.  相似文献   

20.
Copper indium diselenide (CuInSe2) compound was prepared by direct reaction of high-purity elemental copper, indium and selenium. CuInSe2 thin films were deposited onto well-cleaned glass substrates by a hot wall deposition technique using quartz tubes of different lengths (0.05, 0.07, 0.09, 0.11 and 0.13 m). X-ray diffraction studies revealed that all the deposited films are polycrystalline in nature and exhibit chalcopyrite structure. The crystallites were found to have a preferred orientation along the (1 1 2) direction. Micro-structural parameters of the films such as grain size, dislocation density, tetragonal distortion and strain have been determined. The grain sizes in the films were in the range of 65-250 nm. As the tube length increases up to 0.11 m the grain size in the deposited films increases, but the strain decreases. The film deposited using the 0.13 m long tube has smaller grain size and more strain. CuInSe2 thin films coated using a tube length of 0.11 m were found to be highly crystalline when compared to the films coated using other tube lengths; it has also been found that films possess the same composition (Cu/In=1.015) as that of the bulk. Scanning electron microscope analysis indicates that the films are polycrystalline in nature. Structural parameters of CuInSe2 thin films deposited under higher substrate temperatures were also studied and the results are discussed. The optical absorption coefficient of CuInSe2 thin films has been estimated as 104 cm−1 (around 1050 nm). The direct band gap of CuInSe2 thin films was also determined to be between 1.018 and 0.998 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号