首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
深层网络有效地提高了重建图像的精度,但是拥有大量参数,使训练时间过长。因此,改进了一种基于递归残差网络的遥感图像超分辨率重建算法,将全局残差学习和局部残差学习相结合,有效地降低训练深层网络的难度,并且通过递归学习控制网络参数。实验结果证明了递归残差网络在遥感图像超分辨率重建中的有效性,改进的网络可以获得更好的主观视觉效果以及客观评价指标。  相似文献   

2.
针对现有残差网络存在残差特征利用不充分、细节丢失的问题,提出一种结合两层残差聚合结构和感受野扩展双注意力机制的深度神经网络模型,用于单幅图像超分辨率(SISR)重建。该模型通过跳跃连接形成两层嵌套的残差聚合网络结构,对网络各层提取的大量残差信息进行分层聚集和融合,能减少包含图像细节的残差信息的丢失。同时,设计一种多尺度感受野扩展模块,能捕获更大范围、不同尺度的上下文相关信息,促进深层残差特征的有效提取;并引入空间-通道双注意力机制,增强残差网络的判别性学习能力,提高重建图像质量。在数据集Set5、Set14、BSD100和Urban100上进行重建实验,并从客观指标和主观视觉效果上将所提模型与主流模型进行比较。客观评价结果表明,所提模型在全部4个测试数据集上均优于对比模型,其中,相较于经典的超分辨率卷积神经网络(SRCNN)模型和性能次优的对比模型ISRN(Iterative Super-Resolution Network),在放大2倍、3倍、4倍时的平均峰值信噪比(PSNR)分别提升1.91、1.71、1.61 dB和0.06、0.04、0.04 dB;视觉效果对比显示,所提模型恢...  相似文献   

3.
代强  程曦  王永梅  牛子未  刘飞 《计算机应用》2020,40(5):1446-1452
近年来,由于深度卷积神经网络的出色性能,深度学习已成为图像超分辨率领域的研究热点,已经有许多具有很深结构的大型模型被提出。而在实际应用中,普通个人计算机或智能终端的硬件显然不适合大规模深度神经网络模型。提出了一种针对单幅图像超分辨率且具有自动残差缩放功能的轻量级网络(ARSN),与许多基于深度学习的方法相比,它的层和参数更少。此外,该网络中有特殊的残差块和跳跃连接用来进行残差缩放以及全局和局部残差学习。根据测试数据集结果,该网络在重建质量和运行速度上都达到了非常优异的性能。所提出的网络在性能、速度和硬件消耗方面均取得了良好的效果,具有较高的实用价值。  相似文献   

4.
传统的卷积神经网络用到的方法是在稀疏表示的超分辨率图像的基础上学习高/低分辨率图像之间端到端的映射,输入的是高分辨率的图像,输出的是低分辨率的图像,拥有三层卷积层的SRCNN虽然有一定的重建效果,但是感受野较低,因此,提出加深网络结构的方法,此次改进使得后面的网络层拥有更大的感受野,这样结果的像素点可以根据更多的像素点来推断。但是考虑到网络结构加深对传输速率的影响,通过引入局部残差学习和全局残差学习相结合的方法来提高学习率,通过该办法有效地加快了收敛速度,并且通过实验结果验证,与已有的Bicubic、SRCNN和VDSR相比,重建效果在峰值信噪比、结构相似性和视觉效果上均有所提升。  相似文献   

5.
深度卷积神经网络在单图像超分辨率重建方面取得了卓越成就,但其良好表现通常以巨大的参数数量为代价.本文提出一种简洁紧凑型递归残差网络结构,该网络通过局部残差学习减轻训练深层网络的困难,引入递归结构保证增加深度的同时控制模型参数数量,采用可调梯度裁剪方法防止产生梯度消失/梯度爆炸,使用反卷积层在网络末端直接上采样图像到超分辨率输出图像.基准测试表明,本文在重建出同等质量超分辨率图像的前提下,参数数量及计算复杂度分别仅为VDSR方法的1/10和1/(2n2).  相似文献   

6.
针对医学图像分辨率低导致视觉效果差的问题,提出一种基于生成对抗网络的医学图像超分辨率重建方法.使用生成对抗网络架构,由生成器重建高分辨率图像,再将生成器生成的高分辨率图像送入判别器判断真伪.通过实验验证了该方法的有效性,在视觉效果和数值结果上都有所提高.  相似文献   

7.
近年来,深度学习被广泛应用于图像超分辨率重建.针对基于深度学习的超分辨率重建方法存在的特征提取不充分、细节丢失和梯度消失等问题,提出一种基于通道注意的递归残差深度神经网络模型,用于单幅图像的超分辨率重建.该模型采用残差嵌套网络和跳跃连接构成一种简洁的递归残差网络结构,能够加快深层网络的收敛,同时避免网络退化和梯度问题....  相似文献   

8.
肖雅敏  张家晨  冯铁 《计算机工程》2021,47(2):293-299,306
基于卷积神经网络的单图像超分辨率模型网络结构过深,导致高频信息丢失以及模型体积庞大等问题.提出一种由多个残差模块构成的多窗口残差网络优化模型,通过使用多个不同尺寸的窗口对同一特征图进行提取,获取更丰富的高频与低频信息,并过滤出深层网络的所需特征.残差模块中较大尺寸的窗口采用较小尺寸的滤波器和多层映射层叠加组成,可在减少...  相似文献   

9.
随着数码相机、手机等电子设备的普及,每天都会产生大量的图像,但通常这些图像的分辨率比较低。针对单幅图像超分辨率(Single Image Super-Resolution,SISR)方法性能较低的问题,提出一种基于残差密集网络的单幅图像超分辨率重建方法。将浅层的卷积特征输入到残差密集块,获得全局和局部的特征;对图像进行超分辨率重建,得到清晰的高分辨率图像。为了验证该方法的有效性,在四个公共的数据集Set5、Set14、B100和Urban10上进行了定性和定量的实验。实验结果表明,该方法能够更好地恢复出高分辨率的图像。  相似文献   

10.
针对当前大多数基于深度学习的医学图像超分辨率重建方法存在放大因子单一的问题,提出一种多重放大的医学图像超分辨率重建网络模型。以密集残差网络为基础,特征提取级联多个改进连接的密集残差块,降低连接复杂度至对数级,避免浅层的医学图像特征被反复处理。特征图重建采用元信息直接嵌入模式,利用一个小型网络学习不同放大因子任务间的通用知识,实现不同重建任务的整合。将不同放大因子任务对齐至同一维度,实现对小数重建任务的支持。实验结果表明,所提方法与深度卷积(VDSR)等典型方法相比,在峰值信噪比(PSNR)与结构相似度(SSIM)上仍有0.17~1.57 d B与0.002 2~0.042 5的提升。  相似文献   

11.
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法.构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力.引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失....  相似文献   

12.
在基于字典的单帧图像超分辨率重建算法中,依赖人工浅层特征设计的字典表达图像特征能力有限。为此,提出基于深度学习特征字典的超分辨重建方法。该算法首先利用深度网络进行高、低分辨率训练样本图像深层次特征学习;然后,在稀疏字典超分辨框架下联合训练特征字典;最后,输入单帧低分辨率图像并利用该字典实现超分辨率重建。理论分析表明,引入深度网络提取图像深层次特征并用于字典训练,对低分辨率图像的高频信息补充更加有利。实验证明,与双三次插值以及基于一般人工特征字典的超分辨重建算法相比,本文算法的主观视觉和客观评价指标均高于对比算法。  相似文献   

13.
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构。原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像。在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69?dB、1.68?dB、0.74?dB和0.61?dB。实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务。  相似文献   

14.
数字图像在传递信息中起着重要的作用,图像超分辨率技术能丰富图像的细节信息.针对许多网络对低分辨率图像的有效特征复用不足和参数量过大的问题,本文结合不同大小的卷积核以及注意力残差机制构建图像超分辨率网络,用3个有差别尺度的卷积层来提取图像的特征,其中第2和第3层用小卷积核替代大的卷积核,对3层卷积融合之后引入注意力机制,...  相似文献   

15.
近年来,随着科学技术的高速发展,深度学习的蓬勃兴起,实现图像超分辨率重建成为计算机视觉领域一大热门研究课题.然而网络深度增加容易引起训练困难,并且网络无法获取准确的高频信息,导致图像重建效果差.本文提出基于密集残差注意力网络的图像超分辨率算法来解决这些问题.该算法主要采用密集残差网络,在加快模型收敛速度的同时,减轻了梯度消失问题.注意力机制的加入,使网络高频有效信息较大的权重,减少模型计算成本.实验证明,基于密集残差注意力网络的图像超分辨率算法在模型收敛速度上极大地提升,图像细节恢复效果令人满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号