首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
针对传统新闻推荐的数据稀疏性和用户的兴趣爱好快速变化问题,提出了一种融合社交关系和标签信息的混合新闻推荐算法。首先,该算法充分利用社交网络中的社交关系和标签信息;然后使用概率主题模型(latent Dirichlet allocation,LDA)对用户兴趣进行建模;最后采用基于内容与协同过滤相结合的混合推荐算法来完成新闻推荐。实验结果表明,所提算法与已有的推荐算法相比较,在精确度上提升了10.7%、平均倒数排名上(mean reciprocal rank,MRR)提升了4.1%,在归一化折损累计增益(normalized discounted cumulative gain,NDCG)上提升了10%。该算法可在一定程度上提高新闻推荐算法的精度及推荐质量。  相似文献   

2.
《计算机科学与探索》2016,(10):1429-1438
传统的推荐算法大都从评论中挖掘用户兴趣或产品特征,然而由于评论形式自由,规则性差,导致从评论中获取有效信息较困难,推荐结果不理想。在电子商务等领域,评论标签作为一种新的评论方式已经被广泛使用。与评论相比,评论标签具有规则性强,信息密度大等特点,因此提出了一种融合评论标签的推荐算法。该算法从评论标签中挖掘用户对产品特征的观点,并利用其构建用户兴趣模型和产品特征模型,然后向用户推荐在他们感兴趣的特征上有较高评价的产品。与传统推荐算法进行对比,实验结果表明,融合评论标签的算法能有效地提高用户的覆盖率,并提升推荐算法的准确性。  相似文献   

3.
杨墨  李炜  王晶 《计算机系统应用》2013,22(10):151-154
随着YouTube、Flickr和Last.fm等社会化网络的兴起,标签系统在日常生活中扮演着越来越重要的作用.为了给用户提供更优质的推荐,分析用户为不同资源打标签的行为就显得尤为重要.本文将主要的社区发现算法应用到标签系统中的聚类分析中,并比较它们在不同数据集上的表现,设计出针对标签系统的个性化推荐算法.实验结果表明,本文提出的算法能很好的发现不同用户的兴趣,提高推荐系统的质量.  相似文献   

4.
信任网络能模拟现实社会,因此其用户间的信任数据可用于推荐算法,但同时也面临数据稀疏的问题,推荐效果较差。针对该问题,提出融合标签传播和信任扩散的个性化推荐方法。设计基于标签传播的大社区发现算法,得到独属于每个用户的大社区。根据各用户所属大社区内用户间的信任网络,给出信任预处理算法,预测用户新的信任关系,从而扩展用户的信任网络,并利用混合信任扩散算法,使用户及其所在大社区内其他用户之间的信任度更趋差异化。使用Epinions.com上的数据集进行实验,结果表明,与普通信任网络推荐方法相比,该方法的推荐准确度有明显提高。  相似文献   

5.
为提高用户兴趣挖掘的准确性,实现更加精准的用户个性化推荐,提出一种融合标签和长短期兴趣的矩阵分解推荐算法。利用用户使用各标签的次数和生命周期挖掘用户的长短期兴趣,计算用户标签偏好值;利用用户标签偏好值比较用户间的兴趣,获得更加精准的用户间兴趣相似度;将用户间兴趣相似度引入矩阵分解模型,预测项目评分并进行推荐。实验结果表明,该算法挖掘出的用户兴趣比其它推荐算法准确。  相似文献   

6.
随着Web的推广和普及,产生了越来越多的网络数据。 广泛应用了 标签系统 ,以便人们使用搜索技术来组织和使用这些信息。这些数据允许用户使用关键字(标签)注释资源,为传统的基于文本的信息检索提供了方案。为了支持用户选择正确的关键字,标签推荐算法应运而生。提出了一种个性化标签推荐方法,该方法综合了用户的资源标签与标签概率模型。该模型利用了简单语言模型和隐含狄利克雷分配模型,并针对现实世界的大型数据集进行了大量实验。实验表明,该个性化方法改进了标签推荐算法,推荐结果优于传统方法。  相似文献   

7.
为进一步提高个性化标签推荐性能,针对标签数据的稀疏性以及传统方法忽略隐藏在用户和项目上下文中潜在标签的缺陷,提出一种基于潜在标签挖掘和细粒度偏好的个性化标签推荐方法。首先,提出利用用户和项目的上下文信息从大量未观测标签中挖掘用户可能感兴趣的少量潜在标签,将标签重新划分为正类标签、潜在标签和负类标签三类,进而构建〈用户,项目〉对标签的细粒度偏好关系,在缓解标签稀疏性的同时,提高对标签偏好关系的表达能力;然后,基于贝叶斯个性化排序优化框架对细粒度偏好关系进行建模,并结合成对交互张量分解对偏好值进行预测,构建细粒度的个性化标签推荐模型并提出优化算法。对比实验表明,提出的方法在保证较快收敛速度的前提下,有效地提高了个性化标签的推荐准确性。  相似文献   

8.
融合朋友关系和标签信息的张量分解推荐算法   总被引:1,自引:0,他引:1  
针对大众标注网站项目推荐系统中存在数据矩阵稀疏性影响推荐效果的问题,考虑矩阵奇异值分解(SVD)能有效地平滑数据矩阵中的数据,以及朋友圈能够反映出一个人的兴趣爱好,提出了一种融合朋友关系和标签信息的张量分解推荐算法。首先,利用高阶奇异值分解(HOSVD)方法对用户-项目-标签三元组信息进行潜在语义分析和多路降维,分析用户、项目、标签三者间关系;然后,再结合用户朋友关系、朋友间相似度,修正张量分解结果,建立三阶张量模型,从而实现推荐。该模型方法在两个真实数据集上进行了实验,结果表明,所提算法与高阶奇异值分解的方法比较,在推荐的召回率和精确度指标上分别提高了2.5%和4%,因此,所提算法进一步验证了结合朋友关系能够提高推荐的准确率,并扩展了张量分解模型,实现用户个性化推荐。  相似文献   

9.
基于网络结构的推荐算法利用用户与项目间的结构关系进行推荐,忽略了用户偏好,而项目的标签隐含了项目的内容及用户的偏好,提出一种基于网络结构和标签的混合推荐方法。算法根据用户选择项目的标签统计信息,分别采用TF-IDF和用户对标签的支持度两种方法构建用户偏好模型,与基于网络的推荐模型进行线性组合推荐。通过在基准数据集MovieLens上测试证明,该算法在推荐结果命中率、个性化程度、多样性等方面均优于基于网络的推荐算法。  相似文献   

10.
针对人物标签推荐中多样性及推荐标签质量问题,该文提出了一种融合个性化与多样性的人物标签推荐方法。该方法使用主题模型对用户关注对象建模,通过聚类分析把具有相似言论的对象划分到同一类簇;然后对每个类簇的标签进行冗余处理,并选取代表性标签;最后对不同类簇中的标签融合排序,以获取Top-K个标签推荐给用户。实验结果表明,与已有推荐方法相比,该方法在反映用户兴趣爱好的同时,能显著提高标签推荐质量和推荐结果的多样性。  相似文献   

11.
协同过滤推荐作为主流的个性化推荐方法在实际应用中存在一定缺陷, 在一些情况下得到的推荐结果不够准确。考虑到信任与用户偏好相似性的关系, 将信任引入到推荐模型中, 并同时考虑暗示用户偏好的多维因素, 提出基于信任偏好的个性化推荐方法, 以提高推荐系统的准确性, 并用实验验证了此方法的有效性。  相似文献   

12.
面向基于情境感知的推荐问题,提出一种基于用户情境聚类的个性化推荐算法。该算法利用情境预过滤的思想,首先运用模糊聚类的方法对历史数据集中用户的情境进行聚类,构造与当前用户情境相似度较高的用户集合,再与传统的基于用户的协同过滤算法相结合进行个性化推荐。实验采用公开数据集,结果表明该算法在多维情境信息条件下可用,并且推荐准确度要高于传统协同过滤算法,在聚类粒度不同的情况下对推荐结果也会产生不同的影响。  相似文献   

13.
个性化推荐系统是根据用户的爱好,给用户推荐符合用户兴趣的对象的一种高级商务智能平台.论文重点探讨基于用户的协同过滤算法,介绍其基本思想和工作流程,并通过高级语言C++来实现三种相似度计算方法,通过实验比较得出了最佳的计算方法,并设计实现了一个电子商务个性化推荐系统原型,对其他同类网站应用个性化推荐系统具有很好的参考价值.  相似文献   

14.
张晓敏  王茜 《计算机工程》2007,33(24):57-59
改进了传统的协同过滤算法,提出了基于概念层次树的用户模型,利用该模型进行协同运算,使系统在用户共同评分项极其稀疏时也能产生推荐。在相似性计算和产生推荐阶段引入了概念分层思想,分别在商品种类上产生推荐,避免了推荐的单一现象。MovieLens数据集实验表明,改进后的算法在推荐质量上有了明显的提高。  相似文献   

15.
针对个性化推荐系统中用户的多个不同需求,提出一种基于免疫算法的求解方法。该算法将要求解的个性化 推荐列表建模成一个最大化推荐准确性和多样性的多目标优化问题,采用基于用户的协同过滤技术对用户进行分类,设计了 适合推荐问题求解的抗体编码方式、克隆、变异算子。仿真实验结果表明,所提算法能够有效求得个性化推荐的最佳解,达到 可以同时为多个用户提供多个不同推荐的需求。  相似文献   

16.
随着大数据技术的发展,信息化、智能化作战将成为现代战争的未来趋势,如何从浩瀚信息中获取有效信息是提高作战指挥效率的重要问题。面向战场信息共享平台,利用推荐系统可解决信息过载问题的优势,结合军事领域信息数据特点,构建军事平台的个性化推荐系统框架,然后基于该推荐系统,提出融合情景感知的推荐算法,以提高军事平台的推荐服务质量。  相似文献   

17.
个性化微博推荐算法   总被引:5,自引:0,他引:5  
微博不同于传统的社会网络和电子商务网站,存在用户活跃程度低,微博数据稀疏和用户兴趣动态变化等特点,将传统推荐算法应用于微博推荐时,效果并不理想。提出了一种基于贝叶斯个性化排序的微博推荐算法,对用户进行个性化微博推荐。该基于贝叶斯个性化排序的微博推荐算法,以微博对的形式提取微博系统中的隐式信息,对这些微博对进行学习,从而得到用户对不同微博的兴趣值。根据每条微博发出的时间,估计每条微博对的可信度。发出时间越接近的微博对,它的可信度就越高,并且对用户的兴趣值影响就越大。在新浪微博的真实数据上进行实验和评测,结果表明该基于贝叶斯个性化排序的微博推荐算法相比于对比算法,在进行微博推荐时有更好的效果。  相似文献   

18.
基于效用的个性化推荐方法   总被引:1,自引:0,他引:1       下载免费PDF全文
当前的推荐方法未能从个性化效用角度评价推荐项目,因此用户需按自己的偏好,在推荐结果中进行再次筛选。针对该情况,提出一种基于效用的个性化推荐方法。该方法采用逼近于理想值的排序法(TOPSIS)作为衡量推荐对象效用的基本方法。为克服TOPSIS中静态权重设置的不足,采用可变精度粗糙集发现用户对属性的偏好。实验结果表明,该方法能为用户提供更好的个性化效用及准确性的推荐服务。  相似文献   

19.
对现有的Apriori算法进行改进,用分治策略引入哈希技术的方法完成了压缩侯选集,减少频繁扫描数据库的次数,克服了原有关联规则的数据挖掘算法生成频繁集比较大,且需要反复扫描数据库的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号