共查询到20条相似文献,搜索用时 62 毫秒
1.
针对核相关滤波目标跟踪算法中传统手工特征的不足,以核相关滤波方法的目标跟踪技术作为研究对象,利用深度卷积神经网络自动提取待跟踪目标的深度卷积特征,来代替传统的手工特征,利用从不同卷积层提取到的深度卷积特征分别经过核相关滤波器学习来得到不同的特征图,然后对多个特征图进行加权融合来确定待跟踪目标在视频序列中的位置,以此来提高跟踪算法在复杂干扰背景下的鲁棒性。 相似文献
2.
针对相关滤波跟踪算法在目标形变、背景干扰等复杂场景下,易受干扰特征影响导致跟踪失败的问题,提出了基于稀疏表示的相关滤波目标跟踪算法。该算法将稀疏表示与相关滤波相结合,在目标函数中引入L1范数惩罚项,使训练出的相关滤波器只含有目标的关键特征,同时根据相关滤波系数的空间位置为其分配不同的惩罚参数,并采用交替方向乘子法(alternating direction method of multipliers,ADMM)求解相关滤波器。实验结果表明:该算法在三个常用数据集上,与五种相关滤波跟踪算法相比,具有最高的精确度和成功率,且对复杂场景中的干扰特征具有良好的鲁棒性,同时能够满足目标跟踪实时性的要求。 相似文献
3.
针对相关滤波跟踪算法在相似背景、遮挡、快速运动、运动模糊等复杂场景下目标易丢失的问题,提出一种新的基于流形背景感知的相关滤波目标跟踪方法。首先,选取目标区域,提取目标的外观特征,建立目标模型;然后,以目标所在位置为原点,采用双指数分布构建流形搜索区域,并根据目标的运动速度和运动方向动态调整流形搜索区域的搜索范围和搜索角度,提取流形搜索区域内的背景信息,将背景信息与目标特征模型进行滤波器训练,得到滤波器模板;最后,以滤波器模板来确定目标位置,进行目标跟踪。提出的流形背景感知算法,根据目标运动的速度和方向,采用动态搜索机制进行搜索,涵盖了目标随机运动的大概率空间范围,在复杂场景下能够有效搜索目标,并控制了计算量,提升了目标跟踪算法的精度和速度。该方法在标准数据集OTB100上进行了大量的实验,实验结果表明,相较于其他主流算法,该算法对相似背景、遮挡、快速运动、运动模糊等复杂条件下的目标跟踪具有很好的准确率、实时性和鲁棒性。 相似文献
4.
针对现实场景中跟踪算法因背景杂乱、遮挡、尺度变化、目标形变等情况易导致跟踪失败的问题,提出融入深度特征的多模板相关滤波跟踪算法.首先对图像或图像区域分别提取深度特征和Color Name特征,经过核相关滤波器学习得到不同的模板;然后采用核相关滤波跟踪算法获得2个特征下的响应集合,并对所得到的集合进行加权融合得到最终的目标位置;最后使用贝叶斯统计通过最大化后验的方式估计最佳目标尺度,同时更新核相关滤波器参数,以实现自适应尺度的目标跟踪.在OTB2013和OTB2015这2个基准数据库上进行实验,并与当前6种优秀的算法进行比较,结果表明该算法性能最优,在2个数据集上的成功率OP(AUE)较KCF算法分别提升10.7%和12.4%. 相似文献
5.
6.
7.
目的 针对现实场景中跟踪目标背景复杂、光照变化、快速运动、旋转等问题,提出自适应多特征融合的相关滤波跟踪算法。方法 提取目标的HOG(histogram of oriented gradients)特征和利用卷积神经网络提取高、低层卷积特征,借助一种自适应阈值分割方法评估每种特征的有效性,得到特征融合的权重比。根据权重系数融合每种特征的响应图,并据此得到目标的新估计位置,利用尺度相关滤波器计算目标尺度,得到目标尺度完成跟踪。结果 在OTB(object tracking benchmark)-2013公开数据集上进行实验,在对多特征融合进行分析的基础上,测试了本文算法在11种不同属性下的跟踪性能,并与当前流行的7种算法进行对比分析。结果表明,本文算法的成功率和精确度均排名第1,相较于基准算法DSST (discriminative scale space tracking)跟踪精确度提高了4%,成功率提高了6%。在复杂场景下比其他主流算法更具有鲁棒性。结论 本文算法以DSST相关滤波跟踪器为基准算法,借助自适应阈值分割方法评估每种特征的有效性,自适应融合两层卷积特征和HOG特征,使得判别性越强的单一特征融合权重越大,较好表达了目标的外观模型,在背景复杂、目标消失、光照变化、快速运动、旋转等场景下表现出较强的跟踪准确性。 相似文献
8.
针对DSST算法对目标方向发生变化时易出现的跟踪丢失问题,提出了一种目标尺度和方向自适应稳健跟踪算法.算法首先提取目标候选区域HOG和HSV特征,通过相关滤波算法构建多特征融合的二维定位滤波器,从而精确确定目标的中心位置.然后,根据方向池用HOG特征构建一维方向相关滤波器确定目标的最佳方向.并通过构建一维尺度相关滤波器确定最佳尺度.最后,根据PSR值变化情况调整相关滤波模型更新的权重,使模型适应目标的变化特征.选取OTB2013部分数据集进行测试,实验结果表明,上述算法距离精度保持在15pixels以内,成功率较DSST算法提高了20.1%,并且展示了上述算法对跟踪目标的尺度和方向变化具有鲁棒性和有效性. 相似文献
9.
目的 目前非负矩阵分解一般使用乘性规则进行更新,乘性更新规则虽实现简单,但更新时收敛较慢,而且容易陷入局部最优解。当数据规模较大时,乘性规则的时效性很低,难以应用于一些实时性较强的问题中。针对乘性更新规则的这些缺点,提出一种使用交替方向乘子求解正交投影非负矩阵分解的方法。方法 首先,基于正交投影非负矩阵的正交性和稀疏性特征,将原始的目标函数优化问题分解为各子问题的交替优化求解过程。通过引入辅助变量建立原目标函数的增广拉格朗日方程,完成对原问题的子问题等价表示;然后,对转换后方程的主变量和对偶变量进行交替优化求解,从而找到原问题最优解。结果 不同规模矩阵分解仿真实验结果表明,与乘性更新规则相比,本文所提方法在收敛速度和精度上具有明显优势,特别是在矩阵规模很大时,收敛速度明显优于乘性规则。同时,将本文方法应用于目标跟踪问题中,提出一种基于交替方向乘子方法的模版更新策略,并与乘性规则以及其他3种经典目标跟踪算法进行比较。本文方法在目标跟踪效果上与基于乘性更新规则方法相当,且优于其他3种方法,重叠率约0.73,且帧处理速度约是乘性规则的3.8倍。结论 本文方法在数据规模较大时,处理速度明显优于乘性规则。在目标跟踪应用中,因其分解过程中的稀疏性和正交性,与常用跟踪算法相比能较好地应对视频场景中的遮挡、尺度变化及光照变化等干扰,其跟踪性能更加稳定。 相似文献
10.
目的 由于相关滤波(correlation filter,CF)跟踪算法使用循环移位操作增加训练样本,不可避免会引起边界效应问题。研究者大多采用余弦窗来抑制边界效应,但余弦窗的引入会导致样本污染,降低了算法的性能。为解决该问题,提出了嵌入高斯形状掩膜的相关滤波跟踪算法。方法 在空间正则化相关滤波跟踪框架中嵌入高斯形状掩膜,对靠近目标中心和搜索区域边缘的样本重新分配权重,提高中心样本的重要性,同时降低远离中心的边缘样本的重要性,增加中心样本的响应,从而降低样本污染的影响,增强滤波器的判别能力。建立了高斯掩膜相关滤波跟踪算法的目标公式,然后使用交替方向乘子法(alternating direction of multiplier method,ADMM)求解滤波器及空间权重的闭合解。结果 为评估所提算法的跟踪性能,在OTB2013 (online tracking benchmark)、TC128 (temple color)、UAV123 (unmmaned aerial vehicle)及Got-10k (general object tracking)等多个基准数据集上进行了大量实验,并与多个先进的相关滤波跟踪算法对比。结果表明,在OTB2013数据集上精度和成功率分别为90.2%和65.2%,其中精度比基准算法提高0.5%;在TC128数据集上精度和成功率分别为77.9%和57.7%,其中成功率提高0.4%;UAV123数据集上的两个指标数据分别为74.1%和50.8%,精度提高0.3%;在Got-10k数据集上成功率提高了0.2%。结论 与其他相关滤波跟踪算法相比,本文算法在各数据集上的精度和成功率表现出较强的竞争力,显著提高了基准算法的跟踪性能。 相似文献
11.
目前机器视觉应用广泛,视频目标跟踪的过程中会遇到各种挑战。为解决单一特征鲁棒性差,模型和尺度更新机制不健全的问题,提出了一种将自适应加权特征融合方法与置信度模型及尺度更新机制相结合的相关滤波目标跟踪算法。算法将互补的梯度和颜色特征进行融合,通过计算各特征滤波响应来决定下一帧在融合特征中各自所占的权重,凸显优势特征,使目标与背景更具区分度。同时引入置信度更新机制,防止模型更新引入遮挡物、相似干扰,提高正确率。最后提出一种新的尺度更新策略,简化冗余代码,使跟踪更精确的同时降低时间代价。实验结果证明,该算法在精度和正确率上都比几种现有相关滤波算法更优,应对相似目标干扰和遮挡情况具有更高鲁棒性。对相关滤波算法进行了改进,加入了特征融合和更新机制,使算法提高了跟踪效果,具有一定的应用价值。 相似文献
12.
为提高复杂背景下目标跟踪的鲁棒性,提出一种基于相关滤波的自适应特征融合目标跟踪算法.在HOG特征基础上,增加HSV颜色概率直方图,以此获得准确的位置预测.然后分别训练颜色名和HOG特征,并根据两个响应图的峰值自适应地分配融合系数,进而基于尺度池方法,采用多通道特征实现目标的尺度估计.模型的高置信度更新由两个响应图的平均... 相似文献
13.
计算机视觉领域的目标跟踪已取得巨大进展,但在视频跟踪中,平面外旋转和形状变化的性能方面还有提升空间。本文提出一种基于方向梯度直方图HOG特征,结合图像灰度值把HOG特征加以融合和分解,以提升视频跟踪的变形和尺度变换的性能。首先提取目标区域的HOG的31维特征和灰度值;其次,将灰度值作为1维特征,与HOG特征融合成32维向量HOG32;进而将HOG32分解成2部分特征,分别为HOG1和HOG2;最后,通过对HOG1、HOG2和HOG32特征响应值的比较,选择最大值位置作为预测的下一帧的位置。实验在OTB-2013和OTB-2015这2个数据集上进行,与其他5个算法的比较结果表明,该方法在平面外旋转、变形、复杂背景等方面获得良好效果。 相似文献
14.
相关滤波算法因其优越的高效性和鲁棒性被广泛应用于目标跟踪领域,但是该算法无法很好地处理目标遮挡和尺度变化等问题。针对该现象,提出了一种融合相关粒子滤波目标跟踪算法,该算法采用多个相关滤波器,学习到更多目标信息和背景信息,提高了目标与背景辨识度,并且引进了粒子滤波随机采样策略,在目标离开遮挡物时能够快速捕捉到目标。在尺度估计中引入了多尺度因子,对定位到的目标进行多尺度缩放,选用与滤波器响应值最大区域对应的尺度因子作为缩放比例,从而对目标进行尺度更新;粒子滤波算法随着粒子数目的增加,其计算量也随着增加,针对该问题,提出了基于粒子繁衍的重采样算法,在跟踪效率上做了提升。对提出的算法进行了三部分对比实验,实验结果验证了提出算法在处理目标遮挡和尺度变化问题上的有效性。 相似文献
15.
无人机视觉跟踪是视觉跟踪未来应用的核心领域,其由于跟踪目标像幅较小、表 观不清且易受到无人机飞行姿态多变、飞行稳定性差等因素的影响而难以对目标进行鲁棒的跟 踪,特别是发生跟踪遮挡时,算法跟踪漂移后无法进行模型的更新。为提高无人机视频的跟踪 效果,提出一种多特征重检测跟踪方法。首先采用多特征融合的方式提高跟踪算法在无人机跟 踪特征的判别性。其次目标在出现遮挡时,扩大搜索区域,采用滑动窗口采样找到置信度最高 的目标区域并实现模型更新。通过一系列无人机视频实验结果表明,该算法在遇到遮挡问题时 具有较好的鲁棒性,能够提高无人机在目标跟踪过程中的准确性。 相似文献
16.
背景感知相关滤波(Background-aware correlation filters, BACF)算法有效地解决了相关滤波类跟踪算法中的边界效应问题,提升了训练样本集的质量和数量,能够精确估计目标的位置变化,从而提高了跟踪器的性能。然而为了检测尺度变化,BACF算法通过多次重复计算不同尺度的目标区域,严重影响了跟踪速度。本文在BACF算法的基础上,采用平移加尺度滤波的思想,设计独立的一维尺度滤波器,与BACF算法无缝结合。只需预测一次目标的位置变化,再利用尺度滤波器预测目标尺度变化。因为两个滤波器单独训练、局部优化,尺度滤波器计算量远小于BACF算法,所以本文算法在保证精准预测目标尺度变化的同时极大提升目标的跟踪速度。实验结果表明:与BACF算法相比,本文算法在不损失跟踪精度的基础上提高约75%的跟踪速度。 相似文献
17.
针对复杂环境下仅使用单一图像特征跟踪精度和鲁棒性差的问题,提出一种多特征融合的相关滤波目标跟踪算法。该算法首先从目标和背景区域分别提取方向梯度直方图(Histogram of oriented gradient,HOG)特征、颜色直方图特征和卷积特征,采用固定权重方法融合HOG特征和颜色直方图特征的特征响应图,然后将该层融合结果与卷积特征响应图采用自适应权重融合策略进行融合,基于融合后的响应图估计出目标位置,并采用尺度估计方法解决目标尺度变化问题,最后采用稀疏模型更新策略进行模型更新。在OTB-2013公开标准测试集中验证本文算法性能,并与主流的目标跟踪算法进行了对比分析。实验结果表明,与其中最优算法相比,本文算法的平均距离精度值和平均重叠精度值都有所提高。本文算法由于有效地利用了HOG特征、颜色直方图特征和卷积特征,在复杂场景下目标跟踪的准确性和鲁棒性都优于其他算法。 相似文献
18.
19.
针对当前相关滤波跟踪算法在抗背景干扰、响应融合方式以及模型更新策略上的不足,提出一种基于上下文感知与自适应响应融合的相关滤波跟踪算法.通过引入上下文感知技术,提高算法在背景杂波及遮挡等跟踪场景下的鲁棒性;通过研究HOG特征和颜色直方图特征二者响应图和响应值的特点,提出一种自适应响应融合方法,提升融合响应图的可靠性;在模... 相似文献
20.
An Adaptive Padding Correlation Filter With Group Feature Fusion for Robust Visual Tracking 下载免费PDF全文
Zihang Feng Liping Yan Yuanqing Xia Bo Xiao 《IEEE/CAA Journal of Automatica Sinica》2022,9(10):1845-1860
In recent visual tracking research, correlation filter (CF) based trackers become popular because of their high speed and considerable accuracy. Previous methods mainly work on the extension of features and the solution of the boundary effect to learn a better correlation filter. However, the related studies are insufficient. By exploring the potential of trackers in these two aspects, a novel adaptive padding correlation filter (APCF) with feature group fusion is proposed for robust visual tracking in this paper based on the popular context-aware tracking framework. In the tracker, three feature groups are fused by use of the weighted sum of the normalized response maps, to alleviate the risk of drift caused by the extreme change of single feature. Moreover, to improve the adaptive ability of padding for the filter training of different object shapes, the best padding is selected from the preset pool according to tracking precision over the whole video, where tracking precision is predicted according to the prediction model trained by use of the sequence features of the first several frames. The sequence features include three traditional features and eight newly constructed features. Extensive experiments demonstrate that the proposed tracker is superior to most state-of-the-art correlation filter based trackers and has a stable improvement compared to the basic trackers. 相似文献