共查询到20条相似文献,搜索用时 109 毫秒
1.
软件定义网络是一种全新的网络架构,集中控制是其主要优势,但若受到DDoS 攻击则会造成信息不可达,也容易造成单点失效。为了有效的识别DDoS攻击,提出了一种SDN环境下基于BP神经网络的DDoS攻击检测方法:该方法获取OpenFlow交换机的流表项,分析SDN环境下DDoS攻击特性,提取出与攻击相关的流表匹配成功率、流表项速率等六个重要特征;通过分析六个相关特征值的变化,采用BP神经网络算法对训练样本进行分类,实现对DDoS攻击的检测。实验结果表明,该方法在有效提高识别率的同时,降低了检测时间。通过在软件定义网络环境中的部署,验证了该方法的有效性。 相似文献
2.
陶利民 《计算机工程与应用》2008,44(4):147-150
分布式拒绝服务(DDoS)攻击已成为网络最大的安全威胁之一,传统检测防御方法由于多采用单一防范措施很难对其彻底防范。利用移动Agent特性,在设计上整合多种防御方法,构造了一种综合的主动检测防御模型,并详细设计了模型中移动Agent的组成元件,力求解决存在的单点失效、被动防御等问题,使得该模型具有良好的健壮性和可扩展性。 相似文献
3.
软件定义网络(software-defined networking, SDN)实现了控制层和转发层设备的分离, 但控制转发的解耦使得SDN网络中不同层次设备面临新型的DDoS攻击风险. 为了解决上述问题, 本文提出了一种SDN环境下基于改进D-S理论的DDoS攻击检测方法, 用于检测以SDN控制器和交换机为目标的DDoS攻击. 在改进的算法中, 本文使用离散因子和纯度因子衡量D-S证据源之间的冲突. 同时, 结合纯度因子和离散因子调整D-S证据理论的证据源, 调整后的证据源将通过Dempster规则融合得到DDoS攻击检测结果. 实验结果表明本文提出的方法具有较高的精度. 相似文献
4.
针对应用层DDoS(application layer DDoS,App-DDoS)攻击行为的特点,提出了一种基于可信度的App-DDoS攻击防御方法.该方法从服务请求的速率和负载两个方面,统计分析正常用户的数据分布规律,并以此作为确定会话可信度的依据.调度策略再根据会话可信度实现对攻击的防御.最后,通过模拟攻击实验验证了防御方法的有效性.实验结果证明了该方法能够快速有效地实现对App-DDoS攻击的防御. 相似文献
5.
针对应用层分布式拒绝服务(DDoS)攻击类型多、难以同时检测的问题,提出了一种基于集成学习的应用层DDoS攻击检测方法,用于检测多类型的应用层DDoS攻击。首先,数据集生成模块模拟正常和攻击流量,筛选并提取对应的特征信息,并生成表征挑战黑洞(CC)、HTTP Flood、HTTP Post及HTTP Get攻击的47维特征信息;其次,离线训练模块将处理后的有效特征信息输入集成后的Stacking检测模型进行训练,从而得到可检测多类型应用层DDoS攻击的检测模型;最后,在线检测模块通过在线部署检测模型来判断待检测流量的具体流量类型。实验结果显示,与Bagging、Adaboost和XGBoost构建的分类模型相比,Stacking集成模型在准确率方面分别提高了0.18个百分点、0.21个百分点和0.19个百分点,且在最优时间窗口下的恶意流量检测率达到了98%。验证了所提方法对多类型应用层DDoS攻击检测的有效性。 相似文献
6.
马鸿雁 《数字社区&智能家居》2009,5(5):3370-3372
DDoS攻击的防御是当前网络安全研究领域中的难点。通过对DDoS攻击原理的讨论和对现有防范技术的剖析.提出了防范DDoS攻击的一些积极的建议。 相似文献
7.
8.
目前应用层分布式拒绝服务(Application Layer Distributed Denial of Service,AL-DDoS)攻击对网络安全造成的威胁与日俱增,针对应用层用户访问行为,研究了一种基于多聚类中心近邻传播(Multi-Exemplar Affinity Propagation,MEAP)聚类算法的AL-DDoS攻击检测模型。该方法使用用户请求序列的信息熵作为输入,通过MEAP快速获得能够描述用户浏览行为的特征模型,对新加入的请求序列计算到各个聚类中心的距离,设定阈值从而区别正常与攻击序列。通过模拟实验表明,该方法能够有效地完成在线AL-DDoS攻击准实时检测。 相似文献
9.
分析了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击原理及其攻击特征,从提高检测响应时间和减少计算复杂性的角度提出了一种新的DDoS攻击检测方法。该方法基于DDoS攻击的固有特性,从IP连接数据的统计分析中寻找能够描述系统正常行为的分布规律,建立基于统计分析的DDoS攻击检测模型。实验结果表明,该方法能快速有效地实现对DDoS攻击的检测,并对其他网络安全检测具有指导作用。 相似文献
10.
改进的基于熵的DDoS攻击检测方法 总被引:1,自引:0,他引:1
基于熵的分布式拒绝服务攻击(DDoS)攻击的检测方法相比其他基于流量或特征的检测方法,具有计算简便、灵敏度高、误报率低、不增加额外网络流量、不增加额外硬件成本等特点。为了进一步提高了DDoS攻击检测的准确率,并降低误报率,提出一种改进的基于熵的DDoS攻击检测方法。该方法将DDoS攻击细分为不同的威胁等级,对每个威胁等级的攻击进行不同次数的检测。NS-2模拟实验结果验证了其有效性。 相似文献
11.
针对现行分布式拒绝服务(DDoS)攻击检测方法存在检测效率低、适用范围小等缺陷,在分析DDoS攻击对网络流量大小和IP地址相关性影响的基础上,提出基于网络流相关性的DDoS攻击检测方法。对流量大小特性进行相关性分析,定义Hurst指数方差变化率为测度,用以区分正常流量与引起流量显著变化的异常性流量。研究IP地址相关性,定义并计算IP地址相似度作为突发业务流和DDoS攻击的区分测度。实验结果表明,对网络流中流量大小和IP地址2个属性进行相关性分析,能准确地区分出网络中存在的正常流量、突发业务流和DDoS攻击,达到提高DDoS攻击检测效率的目的。 相似文献
12.
SDN(Software Defined Network,软件定义网络)是一种新兴的网络架构,它的控制与转发分离架构为网络管理带来了极大的便利性和灵活性,但同时也带来新的安全威胁和挑战。攻击者通过对SDN的集中式控制器进行DDoS(Distributed Denial of Service,分布式拒绝服务)攻击,会使信息不可达,造成网络瘫痪。为了检测DDoS攻击,提出了一种基于C4.5决策树的检测方法:通过提取交换机流表项信息,使用C4.5决策树算法训练数据集生成决策树对流量进行分类,实现DDoS攻击的检测,最后通过实验证明了该方法有更高的检测成功率,更低的误警率与较少的检测时间。 相似文献
13.
14.
15.
随着检测底层DDoS攻击的技术不断成熟和完善,应用层DDoS攻击越来越多。由于应用层协议的复杂性,应用层DDoS攻击更具隐蔽性和破坏性,检测难度更大。通过研究正常用户访问的网络流量特征和应用层DDoS攻击的流量特征,采用固定时间窗口内的请求时间间隔以及页面作为特征。通过正常用户和僵尸程序访问表现出不同的特点,对会话进行聚类分析,从而检测出攻击,经过实验,表明本检测算法具有较好的检测性能。 相似文献
16.
17.
18.
针对嵌入式平台下卷积神经网络运行速度慢,无法快速手势检测的问题,提出一种基于SSD的卷积神经网络的嵌入式手势检测算法,该算法显著提高了手势检测速度,并保持了高精度。首先通过一种预处理方法,对原来的手势数据库进行5倍扩展;然后对SSD算法的基础神经网络层进行卷积因子分解,使用MobileNet神经网络获得了在CPU下的3倍加速;最后通过改变输入图片大小同时改变网络结构,减少了算法的计算复杂度。实验结果表明所提算法在两个数据集上的平均精度均值(Mean Average Precision,mAP)下降2.7%,但是在Qualcomm SnapDragon 820平台下检测一张图片时间可达到0.233 s,检测速度提高40倍以上。 相似文献
19.
分析了入侵检测技术在计算机网络安全技术中的作用和地位,同时将BP神经网络算法应用于入侵检测当中,建立了基于BP神经网络的智能入侵检测系统.该系统能够通过数据包捕获模块实时抓取网络中传输的数据包,之后通过协议分析模块进行数据包所使用的数据协议的识别,从而能够在BP神经网络模块分别针对采用TCP、UDP、ICMP这三种网络数据传输协议的数据包进行处理.从本文中列出的该系统在Matlab07上的仿真结果可以看出:基于BP神经网络的智能入侵检测系统能够有效地提升入侵检测识别率. 相似文献
20.
从传统网络到物联网,分布式拒绝服务攻击一直是网络安全的隐患。为提高分布式拒绝服务攻击的检测率,提出基于概率图模型与深度神经网络的DDoS攻击检测方案。该检测方案由数据预处理阶段和攻击检测阶段组成,在数据预处理阶段,研究了正常数据包与攻击包的区别,分别从TCP、UDP以及IP数据包包头信息提取出较高维的统计特征,根据随机森林计算的特征重要性因子,保留了前22个特征用于流量检测。22个统计特征通过概率图模型的隐马尔科夫算法进行聚类,然后将聚类结果通过检测阶段的深度神经网络对网络数据进行进一步的检测。在CICDoS数据集上进行验证性实验,结果表明,该检测方法的准确率最高可达99.35%,最低检测误报率和漏警率分别可达0.51%和0.12%。 相似文献