首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 58 毫秒
1.
2.
为解决售电套餐营销利润以及客户满意度下降、策略制定耗时增加的问题,考虑到售电对象的精准划分,提出一种基于用户画像的售电套餐精细化营销方法。通过分析结果对客户群进行细分,完成目标客户群的精准定位;结合目标客户群精准定位结果组建售客户价值评价指标体系,通过多维聚类技术以及用户画像分析进行客户筛选、识别以及分类,通过客户细分结果,制定不同的售电套餐精细化营销方案。实验结果表明,所提方法不仅有效提升客户满意度以及售电套餐营销利润,还可以有效降低售电套餐营销策略制定耗时。  相似文献   

3.
为了确定可信度量中的属性权重,提出一种新的软件属性权重的分配方法。首先,对软件属性模型进行分层划分属性,引入软件属性互相影响的概念;其次,结合基于属性相互影响和属性重要性的权重分配方法,从两个层次对属性的权重进行综合预测;最后,通过实际的例子对软件属性权重进行量化的分析,详细描述了该方法的具体过程。提出的软件属性权重的分配方法是一个通用的方法,对于各种软件可信度量中的属性权重可以进行相应的分析,在可信度量中软件属性权重的确定上有一定的实际意义和做了积极的探索。  相似文献   

4.
随着电子商务的发展,基于协同过滤的推荐算法越来越受欢迎,与此同时,该算法的缺陷也越来越明显,如数据稀疏性、系统可扩展性等。另外传统的单机计算模型也难以满足海量数据的实时推荐需求。为此,提出一种利用Spark计算模型实现分布式推荐的方法。该推荐方法采用基于谱聚类和朴素贝叶斯的混合推荐算法,同时使用增量式更新,在不全部重新训练模型的基础上,对模型进行局部修改。实验结果表明,较传统的单机模式推荐算法,基于Spark计算模型的分布式推荐算法,在一定程度上克服了数据稀疏性,提高了系统的可扩展性,降低了系统的响应时间。  相似文献   

5.
随着信息技术及智能移动设备的发展和普及,广告的推送方式和投放平台呈现多样化。传统电商推荐系统的运行速度较慢,无法根据根据用户的实际需求进行推荐。实时广告推荐系统作为应对这些挑战的有效手段,成为个性化服务领域的研究热点之一。文章重点分析了基于Spark的实时广告推荐系统,以期为相关研究提供借鉴。  相似文献   

6.
基于Spark的分层协同过滤推荐算法   总被引:1,自引:0,他引:1  
《电子技术应用》2015,(9):135-138
协同过滤是推荐系统中最广泛使用的推荐算法。针对单机模型已经不能满足推荐系统的实时性与扩展性,提出一种基于Spark的分层协同过滤推荐算法。算法首先基于用户时间行为序列构建用户兴趣模型;其次基于RDD实现了并行化EM聚类算法,将用户划分为不同的用户簇;最后基于不同的用户簇实现了并行化Item-based协同过滤推荐算法。通过阿里巴巴天池数据集实验表明,该算法可明显减少推荐时间并提高了推荐准确度,具有良好的可扩展性。  相似文献   

7.
改进属性重要度概念,给出了一种基于粗糙集理论的单属性重要度和组合属性重要度结合的确定属性权重的方法及其具体操作步骤。通过实例说明,改进的粗糙集权重计算方法具有普适性,权重计算更合理。  相似文献   

8.
推荐系统广泛应用于人们生活的多个领域,日常生活中常见的有电商、电影、音乐和新闻推荐等.推荐系统根据用户的历史偏好主动推送相关的信息,节约了用户的时间,极大地提升了用户的体验.随着大数据技术的发展成熟,数据处理的速度变得更快.该文选取MovieLens电影数据集,并基于大数据分布式处理框架Spark和交替最小二乘法ALS...  相似文献   

9.
响应速度较慢和推荐内容与用户上下文信息匹配程度低是当前影片推荐系统迫切需要解决的问题。针对上述挑战,提出Spark平台下基于上下文信息的影片混合推荐方法。它利用分布式并行计算技术Spark进行加速,来提高系统对于海量数据的检索与计算速度,从而减少了系统响应时间。同时该方法将“上下文推荐”和“交替最小二乘的协同过滤(ALS)”融合成一种混合推荐方法,提高了系统的推荐精度。实验结果表明,所提出的混合推荐方法有不错的效果。  相似文献   

10.
为解决人们“每天不知道吃什么”的烦恼,采用Spark分布式处理框架,结合分布式存储数据库(MongoDB)、日志收集系统(Flume)、分布式系统文件(HDFS)等工具,实现对菜品实时评分及特色化推荐。系统包含菜品评分及储存模块、评分数据处理模块、菜品推荐模块、推荐结果展示模块等,其中推荐模块采用协同过滤推荐算法。使用测评方法和指标验证3种推荐模型的有效性,根据测评结果设计并实现以基于物品的推荐模型为主、以基于Spark ALS的推荐模型为辅的智能菜品推荐系统。该系统能够快速准确地推荐顾客喜欢的菜品,提高了商家的服务效率和顾客的满意度,可用性较高。  相似文献   

11.
随着当前移动互联网的快速发展,人们所面临的信息过载问题变得尤为严重,大数据场景下对特定用户的个性化推荐面临着巨大挑战. 为了进一步提高推荐的时效性、准确度以及缓解面临的大数据量. 提出了一种矩阵分解推荐算法在大数据环境下的优化算法模型. 该模型通过在传统矩阵分解推荐算法的基础上融合了用户以及物品的相似性计算,在训练目标函数的过程中,即融入用户以及物品的前k个最近邻居的相似性计算,增强了算法的推荐准确度. 利用Spark在内存计算以及迭代计算上的优势,设计了一种Spark框架下的矩阵分解与最近邻融合的推荐算法. 通过在经典数据集—MovieLens数据集上的实验结果表明,该算法与传统的矩阵分解推荐算法相比,可以很好的缓解数据稀疏性,提高推荐算法的准确度,并且在计算效率方面也优于现有的矩阵分解推荐算法.  相似文献   

12.
案例推理属性权重的分配模型比较研究   总被引:2,自引:0,他引:2  
严爱军  钱丽敏  王普 《自动化学报》2014,40(9):1896-1902
案例推理系统中各属性权重的赋值决定了案例之间的相似度 大小,进而对推理结果的正确与否产生显著影响.以属性加权K-最近邻 相似案例检索为基础,讨论了使用注水原理分配属性权重的机理,并通过建 立权重分配的合理性指标,构造拉格朗日函数对权重进行优 化求解,得到了收敛的注水分配算法.通过五折交叉的模式分类实验 ,分别对属性权重的平均分配法、注水分配算法和遗传算法分配法进行了比较研究,案例推理分类结果证明,在引入注水分配算法后,其分类性能得到有效改善.  相似文献   

13.
为解决单机环境下海量地震观测数据计算和分析效率低下的问题,提出一种基于分布式架构的地震观测数据的存储、计算和分析处理方法,选择噪声功率谱复杂计算过程的应用场景进行实现.基于Hadoop在海量数据处理上的性能优势,在分布式文件存储系统HDFS上进行地震观测数据的存储和调度,研究测震数据噪声功率谱的质量评估方法在Spark...  相似文献   

14.
张其文  谢艳钊 《计算机科学》2016,43(12):88-90, 96
针对模糊软集在群决策过程中其属性权重往往被忽略或依靠主观经验来确定的问题,提出了一种基于属性优势度的属性权重确定方法,并讨论了其相关性质及运算。在群决策过程中,针对决策信息是随时间变化而变化的这一特点,定义了时序模糊软集等概念,并建立了基于决策时间差的对数增长型时间权重确定公式。最后通过与其他决策方法进行对比分析验证了该方法的可行性和合理性。  相似文献   

15.
随着众包系统的兴起,人们对众包系统的关注逐渐增多。基于众包系统中的任务推荐,研究者大多将用户对任务的行为数据转化为评分,但没有考虑任务关联关系以及用户兴趣变化对推荐结果的影响。为此,提出一种考虑任务关联度与时间因素的改进OCCF方法,以对任务进行推荐。一方面,在负例抽取阶段引入兴趣遗忘函数,并根据用户活跃度抽取一定数量的负例;另一方面,在概率矩阵分解阶段融合任务相似度信息以进行分解。将所提出的方法应用于众包系统的任务推荐中,利用威客任务中国的数据集进行了实验。实验结果表明,与主流方法相比,所提方法取得了更好的结果,能有效地提高推荐质量。  相似文献   

16.
介绍了属性约简的原理,在此基础上提出了基于重要性的约简方法,它是利用属性重要性原理,求取核属性和最简属性约简。并举例与传统的方法进行比较。  相似文献   

17.
基于粗糙集理论的权重确定方法研究   总被引:3,自引:4,他引:3  
针对属性权重完全未知且属性值以专家经验给出的多属性决策问题,提出了利用属性重要度计算客观权重的分配方法。根据粗糙集中的相对正域概念,探讨了如何运用属性重要度确定各属性的客观权重。决策者可以通过经验因子的选取来调整客观权重和主观权重所占的比例,通过实例说明该方法更加有效合理。  相似文献   

18.
协同过滤推荐算法是电子商务个性化推荐系统中采用最为广泛的推荐技术,但是传统的推荐方法在进行商品推荐时忽略了交易时间和产品的价格因素,从而导致推荐质量下降。针对这一问题,提出了考虑时间和价格因素的协同过滤模型,通过实验表明在计算Pearson相关系数时考虑时间和价格因素对算法的改进最为有效。  相似文献   

19.
用电数据涉及客户隐私,在分发共享过程中存在泄露风险,数字水印是实现泄露溯源追责的有效手段。而水印植入将导致数据偏移,影响数据分析可用性,且部分数据泄漏时溯源效果不够理想。本文提出一种基于子水印和属性筛选的用电数据泄露溯源算法WRTA,该方法通过利用信息增益率和基尼系数计算数据属性的重要程度,通过密钥和主键随机选择非重要属性来构建子水印,并且兼顾数据分析可用性和安全性,实现部分数据泄露的溯源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号