首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
目的 人脸年龄估计技术作为一种新兴的生物特征识别技术,已经成为计算机视觉领域的重要研究方向之一。随着深度学习的飞速发展,基于深度卷积神经网络的人脸年龄估计技术已成为研究热点。方法 本文以基于深度学习的真实年龄和表象年龄估计方法为研究对象,通过调研文献,分析了基于深度学习的人脸年龄估计方法的基本思想和特点,阐述其研究现状,总结关键技术及其局限性,对比了常见人脸年龄估计方法的性能,展望了未来的发展方向。结果 尽管基于深度学习的人脸年龄估计研究取得了巨大的进展,但非受限条件下年龄估计的效果仍不能满足实际需求,主要因为当前人脸年龄估计研究仍存在以下困难:1)引入人脸年龄估计的先验知识不足;2)缺少兼顾全局和局部细节的人脸年龄估计特征表达方法;3)现有人脸年龄估计数据集的限制;4)实际应用环境下的多尺度人脸年龄估计问题。结论 基于深度学习的人脸年龄估计技术已取得显著进展,但是由于实际应用场景复杂,容易导致人脸年龄估计效果不佳。对目前基于深度学习的人脸年龄估计技术进行全面综述,从而为研究者解决存在的问题提供便利。  相似文献   

2.
在大多数受限情况下人脸检测已经有了许多有效方案,但对于人脸尺度变化极大、小人脸,以及模糊、遮挡、光照等非受限环境的人脸检测问题,仍面临更多挑战。针对以上问题,提出一种多尺度卷积神经网络模型。在R-FCN网络的基础上进行改进,以多尺度特征替代单一特征,使网络对多尺度信息更加敏感,在预测阶段同时输出分类置信度与回归置信度,改进非极大值抑制(non-maximum suppression,NMS)算法,提出基于回归置信度的NMS算法。在WIDER FACE数据集上训练模型,在FDDB与WIDER FACE人脸评测库进行实验,实验结果表明,召回率、准确率等指标均优于其它人脸检测算法。  相似文献   

3.
本文提出了一种新型的基于人脸五官辅助的深度年龄估计方法,将传统的人脸五官区域特征提取加分类器设计方法与基于深层卷积神经网络(convolutional neural network,CNN)的端到端分类方法进行融合来解决年龄估计问题,增强了系统模型的泛化能力.该方法将面部关键点生成的局部对齐的人脸图像块作为CNN的输入,直接从图像的像素点评估年龄,采用多尺度分析网络结构极大地提高了性能,同时又利用传统算法增强了五官区域的信息.最后通过在MORPH AlbumⅡ上的实验表明文中提出方法比其他同类研究方法更加优秀.  相似文献   

4.
卷积神经网络在检测不同尺度的人脸时所需要的计算量很大,检测过程由多个分离的步骤组成,过于复杂。针对这两方面的不足,提出一种多尺度卷积神经网络模型。根据卷积神经网络各个层具有大小不同的感受野,从不同层提取多个尺度的特征向量分别进行人脸分类与回归,并将网络的全连接层改成卷积层,以适应不同大小的图片输入。该方法将人脸检测的多个步骤集成到一个卷积神经网络中,降低了模型复杂度。实验结果表明,相同测试条件下,所提方法相比其他人脸检测模型在准确率和检测速度上均有显著提升。  相似文献   

5.
赵一丁  田森平 《计算机应用》2017,37(7):1999-2002
针对现有人脸年龄数据库样本数量少、各年龄段分布不均匀的问题,提出了一种基于分类与回归混合模型的人脸年龄估计方法。该方法主要包含两个方面:特征学习和估计模式。在特征学习方面,利用已有的深度卷积神经网络(CNN),先在粗糙年龄标注数据集上预训练,再在现有的精确年龄标注数据库上微调,分别得到一个年龄段判别模型和两个年龄估计模型;在估计模式方面,该方法采用由粗到细的策略:首先,将人脸分入青少年、中年、老年和两个重叠区域这五个年龄段;然后,对于青少年和老年采用分类模型估计,对于中年采用回归模型估计,对于重叠区域采用两个模型估计的均值。所提方法在测试集上的平均绝对误差(MAE)为2.56。实验结果表明该方法受不同肤色和性别的影响较小,有较低的误差。  相似文献   

6.
针对使用传统神经网络算法进行人脸年龄估计可能会带来梯度弥散或梯度爆炸引起网络退化的风险,提出了选择性多层融合的卷积神经网络结构(SMLF-Net, Selective multilayer fusion convolutional neural network)。首先在SMLF-Net设计中融合了类似SE(Squeeze-and-Excitation Networks)结构增强了模型的非线性和特征重标定。其次为了提高深层网络模型的分类精度,引入了类似RE(ResNets)结构解决网络退化问题。最后根据卷积核移动步长动态选择网络结构避免网络参数过多。该方法通过构建RE与SE结构提取人脸的高维、中维、低维特征,并使用BN(Batch Normalization)操作降低网络训练难度。结果在扩充亚洲数据后的IMDB-WIKI数据集上对本文方法进行训练,并在树莓派上进行测试。结果显示SMLF-Net方法能够取得平均绝对误差(MAE)为3.09的估计精度,优于Google InceptionNet方法(MAE)为3.32和ShuffleNet方法(MAE)为3.54,充分证实了本文所提方法的先进性和有效性。  相似文献   

7.
为实现快速而准确的人脸检测,提出了一种基于全卷积神经网络的多尺度人脸检测的方法,将卷积神经网络模型AlexNet的全连接层改为全卷积层,并将分类层改为人脸与非人脸的二分类,训练之后准确率达到99.16%。将训练好的分类模型用于人脸检测时,待检测图片通过多尺度变换后输入全卷积网络得到特征图的概率矩阵,用非极大值抑制得到最精准的人脸框。检测结果表明,该方法在人脸检测时准确率高,检测时间短,表现出较好的性能。  相似文献   

8.
人脸图像年龄估计是模式识别领域中一个重要的研究方向。本文针对人脸图像年龄估计中提出的模型进行了分析、分类、归纳和总结,指出了各种模型的优缺点和研究现状。  相似文献   

9.
在基于深度学习的单目图像深度估计方法中, 卷积神经网络在下采样过程中会出现图像深度信息丢失的情况, 导致物体边缘深度估计效果不佳. 提出一种多尺度特征融合的方法, 并采用自适应融合的策略, 根据特征数据动态调整不同尺度特征图的融合比例, 实现对多尺度特征信息的充分利用. 由于空洞空间金字塔池化(ASPP)在单目深度估计任务中, 会丢失图像中的像素点信息, 影响小物体的预测结果. 通过在对深层特征图使用ASPP时融合浅层特征图的丰富特征信息, 提高深度估计结果. 在NYU-DepthV2室内场景数据集的实验结果表明, 本文所提方法在物体边缘处有更准确的预测, 并且对小物体的预测有明显的提升, 均方根误差(RMSE)达到0.389, 准确率(δ <1.25)达到0.897, 验证了方法的有效性.  相似文献   

10.
人脸图像的年龄估计技术研究   总被引:2,自引:0,他引:2       下载免费PDF全文
年龄信息作为人体的一种重要生物特征,在安全监控、人机交互、视频检索等领域有着巨大的应用潜力,并且是人脸识别技术的主要瓶颈问题之一。基于人脸图像的年龄估计技术作为一种新兴的生物特征识别技术,目前已经成为计算机视觉、人机交互等领域的一个重要研究课题。为此对国内外近几年来在年龄估计技术方面的发展情况进行了综述,主要包括年龄特征提取与年龄分类模式两大部分。同时对常用的年龄数据库、性能评价指标进行了总结,并在此基础上对当前的一些年龄估计系统的性能进行了对比。最后,对基于人脸图像的年龄估计技术所面临的挑战以及可能的发展方向进行了讨论。  相似文献   

11.
针对目标的三维姿态估计,结合基于深度学习的目标检测模型,提出一种基于改进YOLO V2的6D目标姿态估计算法.通过卷积神经网络提取一幅RGB图像中目标的特征信息;在2D检测的基础上将目标的位置信息映射到三维空间;利用点到点的映射关系在三维空间匹配并计算目标的自由度,进而估计目标的6D姿态.该算法不仅能检测单幅RGB图像...  相似文献   

12.
魏玮  赵露  刘依 《测控技术》2020,39(2):115-120
人脸姿态分类在智能人机交互、虚拟现实、智能控制以及人脸识别等多个领域都有广泛的应用。由于人脸姿态分类过程中存在不同角度间特征重叠率高的问题,导致其分类精度过低。为提高人脸姿态分类的准确率与鲁棒性,提出了基于迁移学习的人脸姿态分类方法。该方法利用卷积神经网络的特征提取和学习能力,对特征进行识别和分类,从而得到单方向人脸姿态的训练参数。利用迁移学习,将卷积神经网络训练好的参数应用于训练两个方向的人脸姿态模型中。使用该方法在CAS-PEAL数据集上进行了实验,最终结果的准确率达到98. 7%,并且与AlexNet、VGGNet和ResNet等网络模型做对比实验,得到了更好的人脸姿态分类效果。实验结果表明,所提出的方法显著提高了人脸姿态分类的准确率与鲁棒性。  相似文献   

13.
针对现有的人脸姿态估计方法易受“自遮挡”影响,采用改进的ASM 算法 提取人脸特征点,并利用人脸形态的几何统计知识来估计人脸特征点的深度值。以人脸主要 特征点建立人脸稀疏模型,在利用相关人脸特征点近似估计人脸姿态后,通过最小二乘法精 确估计三维人脸空间姿态。实验结果表明,对于“自遮挡”情况,该方法仍有较好的估计结果, 与同类方法比较具有良好的姿态估计精度。  相似文献   

14.
现有年龄估算方法的性能度量主要是基于训练集与测试集独立同分布的假设。为了能更好地符合实际场景以及更好地评估年龄估算方法的泛化性能,提出一种异构数据集评估协议,即在年龄估算时更关注训练集与测试集具有的不同分布和特征情况。此外,为了提高基于卷积神经网络的年龄估算方法的拟合能力,在充分考虑相邻年龄特性的基础上,通过将年龄估算问题建模为基于高斯模型的标签分布学习,提出一种新颖的损失函数。理论分析与实验结果皆说明本文方法的有效性与鲁棒性。  相似文献   

15.
由于人脸面貌特征与年龄存在着较大的不确定性,提出了基于模糊隶属度的人脸图像年龄估计.用对光照、尺度变化具有很强鲁棒性的Gabor小波变换提取人脸特征,为了避免维数灾难,降低后续计算量,利用主成份分析方法对提取到的特征进行降维,细致推导了适用于人脸图像年龄估计的模糊函数,根据最大隶属度原则,来估计人脸的年龄.在FG-NET人脸库及自建的FAID人脸库中进行了实验,取得了94%的最高识别率.  相似文献   

16.
何正风  孙亚民 《计算机工程》2012,38(19):175-178
针对高维、小样本的分类问题,提出2个重要的准则,用于估计RBF单元的初始宽度.采用主成分分析方法把训练样本集投影到特征脸空间,以减少维数,用Fisher线性判别式产生一组最具判别性的特征,使不同类间的训练数据尽可能地分开,而同一类的样本尽可能地靠近.实验结果证明,该算法在分类的错误率及学习的效率上都表现出较好的性能.  相似文献   

17.
针对现实场景中遮挡人脸检测精度低的问题,提出了一种基于汇聚CNN和注意力增强网络的遮挡人脸检测方法.首先,在主网络的多层原始特征图上,通过有监督学习的方法增强原始特征图中人脸可见部分的响应值.然后,将多个增强特征图组合成附加增强网络与主网络汇聚设置,以加快对多尺度遮挡人脸的检测速度.最后,将有监督信息分散到各个尺寸的特...  相似文献   

18.
卷积神经网络是一种很好的特征提取器,但却不是最佳的分类器,而极限学习机能够很好地进行分类,却不能学习复杂的特征,根据这两者的优点和缺点,将它们结合起来,提出一种新的人脸识别方法。卷积神经网络提取人脸特征,极限学习机根据这些特征进行识别。本文还提出固定卷积神经网络的部分卷积核以减少训练参 数,从而提高识别精度的方法。在人脸库ORL和XM2VTS上进行测试的结果表明,本文的结合方法能有效提高人脸识别的识别率,而且固定部分卷积核的方式在训练样本少时具有优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号