共查询到16条相似文献,搜索用时 62 毫秒
1.
针对传统算法由于时间或空间复杂度过高而难以实现规模大且动态变化情况下标签图的Top-K子图查询问题,提出一种适用于大规模标签图的动态Top-K兴趣子图查询方法DISQtop-K。该方法建立了包括节点拓扑结构特性(NTF)索引和边特性(EF)索引的图拓扑结构特性(GTSF)索引,利用该索引可有效剪枝过滤不满足限制条件的无效节点及边;基于GTSF索引提出了多因素候选集过滤策略,通过对查询图候选集进一步剪枝以获得较少的候选集;考虑到图的动态变化可能对匹配结果产生影响,提出了Top-K兴趣子图匹配验证方法——DISQtop-K,将匹配验证过程分为初始匹配和动态修正两个阶段,以尽可能保证查询结果的实时、准确。大量实验结果表明,相比RAM、RWM算法,DISQtop-K方法的索引创建时间较短且占用空间较少,能有效处理大规模标签图中的动态Top-K兴趣子图查询。 相似文献
2.
近年来,子图查询作为图数据库管理的一项重要课题受到国内外学者的广泛关注。在现实应用中大部分图数据是频繁更新的,而现有方法对图数据的频繁更新的维护代价较高。子图查询本身就是NP完全问题,在动态图数据上子图查询问题就变得更加困难。针对上述问题,提出了支持动态图数据的子图查询方法。该方法首先构造出每张图的拓扑层次序列作为索引,在序列中加入标号以便数据更新后对索引进行维护,再根据序列间的匹配关系过滤出候选集合,最后采用图同构算法验证候选集中的图,最终得到结果集合。该方法的索引构造简单且体积小,并且在图数据库更新后无需重构索引,不仅支持动态图数据上的子图查询,在静态图数据上也表现出良好的性能。 相似文献
3.
传统的子图查询算法大多只在图数据库上进行一次挖掘算法,即在图数据库上建立稳定的数据库索引后将不再对索引进行更新.随着查询兴趣的改变或数据库的频繁更新,原有的数据库索引将不再能提供有用的信息来减少查询过程中候选图的数量.为此,提出一种双索引的子图查询算法,同时在数据库和查询流上挖掘频繁子图并建立索引.子图查询和查询流索引的建立同步进行,即使查询兴趣改变,查询流索引也能自适应地更新索引信息来优化查询效率.针对数据库的频繁更新,查询流索引已提供实时的有效信息,数据库索引无需重新建立.实验结果表明,双索引的结合能有效提高查询子图的处理效率. 相似文献
4.
图模型具有强大的表达能力,被广泛用于各种应用领域的数据建模.如何在大规模图数据库中进行高效子图包含查询是当前的研究难点之一.由于子图同构是一个NP完全问题,在现有的子图包含查询算法中,基于图特征的索引技术被广泛用来提高查询处理性能,但是这些索引结构的维护代价较高.针对有向无环图提出了一种基于拓扑序列的子图包含查询算法,... 相似文献
5.
挖掘时序图中的特定模式,能够有效地发现有价值的信息,并进行预测与决策支持,因此动态子图的查询及索引优化成为时序图研究的一个热点。研究了聚焦在动态子图的快速查询,着重探讨了索引优化,给出了查询模型的定义及基本查询算法。针对查询算法进行索引优化,提出了两种不同的建立索引的方法,波形索引及二叉树索引。为了验证索引的适用条件,设计了相应的实验,并使用随机数据集对实验程序进行测试,从时间消耗和空间占用的角度对两种索引的运行效率进行了验证分析。波形索引的优势在于存储结构简单,适用于边长度较长边数量不多的情况。二叉树索引的查询速度快,适用于边长度较短边数目较多的情况。 相似文献
6.
图作为表示实体间的数据结构,在社区发现、生物化学分析、社会安全分析等数据关联性要求较高的领域有着广泛的应用。对于大规模数据下进行实时的图查询问题,通过构建合适的索引可以有效降低查询响应时间,提高查询精确度。首先介绍基于索引的子图查询算法的基本结构;然后按索引的构建方式将主流算法分为基于枚举的方法和基于频繁模式挖掘的方法两大类,分别从索引特征、索引结构、应用数据集等方面进行介绍和分析;最后对基于索引的子图查询算法面临的主要问题进行总结和分析,阐述了最新的分布式系统下图查询技术,并对未来趋势进行展望。 相似文献
7.
《计算机应用与软件》2016,(10)
当前图数据库中的子图同构查询算法主要是依赖倒排索引,然而处理那些具有庞大数据的数据库和复杂的查询愈发成为挑战。研究目的是设计一个算法,使用新的索引作为查询处理的核心,记录查询图的每一个细小改变,并使用一种特殊的数据结构来维护。先是引出一个索引算法,然后逐渐分析整个索引、查询过程,并利用该算法实现一个系统,最后在不同数据集和查询上进行实验。实验证明了该算法具有良好的时间、空间效率和扩展性。新的索引算法能够支持更大的查询图和更加灵活的查询。通过实现的系统和其他系统的对比实验,验证了算法的有效性。 相似文献
8.
9.
子序列的相似性查询是时间序列数据集中的一种重要操作,包括范围查询和k近邻查询.现有的大多算法是基于欧几里德距离或者DTW距离的,缺点在于查询效率低下.文中提出了一种新的基于LSH的距离度量方法,可以在保证查询结果质量的前提下,极大提高相似性查询的效率;在此基础上,给出一种DS-Index索引结构,利用距离下界进行剪枝,进而还提出了两种优化的OLSH-Range和OLSH-kNN算法.实验是在真实的股票序列集上进行的,数据结果表明算法能快速精确地找出相似性查询结果. 相似文献
10.
图是一种很强大的工具,在许多应用领域如化学化合物,生物信息,XML文档,图像处理和社会网络等应用中它可以表示其对象及它们之间的关系,而且在模式化复杂的结构数据时图发挥了越来越重要的作用.图的一个最基本的操作是图的查询处理,经典的图查询问题是给出图数据库和一个查询图,从图数据库中找出那些包含查询图作为子图的图.在本文中对于给定的查询图提出了一种有效的索引策略,在图数据库中选取具有判别力的树作为特征树,对这些特征树进行编码,将结构之间的比较转化为编码序列之间的比较,并利用特征树建立索引,提出了两种剪枝策略,过滤掉数据库中与查询图不是精确匹配的图.实验验证了所提出查询处理算法的有用性和有效性. 相似文献
11.
在基于关系型数据库构建的大规模配置管理数据库(CMDB)中,根据业务场景实现的关联查询功能,存在查询分析语句构造复杂、执行时间长的性能问题。为解决该问题,提出利用图数据库来实现关联查询的方法。利用配置项间的关系与图数据结构的一致性,构建基于图数据库的配置项关系表达,设计并实现一个基于图数据库的关联查询模块,以松耦合的方式集成到现有的配置管理数据库中,达到快速关联查询的目标。实验表明,本文的方法能有效解决大规模关系型数据库CMDB关联查询的性能问题。 相似文献
12.
13.
14.
基于层次图变换的多Agent组织结构动态重组机制 总被引:1,自引:0,他引:1
如何动态适应环境是基于组织计算的多Agent系统的关键研究内容之一.组织结构的动态重组为多Agent系统柔性地实现组织目标提供了有效途径.结合Agent组织结构特点,给出了一种描述组织结构的社会结构、角色指定和Agent协调的单根节点层次图模型.通过单根节点和层次化地维护组织结构内元素的拓扑关系,有效地降低了大规模Agent组织重组问题的复杂性;扩展DPO(double-pushout)代数图变换,形式定义了Agent组织结构的重组过程.单根节点层次图描述了重组过程中给定时刻的组织结构状态,图变换规则序列定义了组织结构的变化过程.Agent组织重组和图匹配算法实验结果表明,该层次图变换方法有效地刻画了多Agent组织动态重组过程,并支持图形化重组过程要素设计和大规模Agent组织的重组计算. 相似文献
15.
基于最小生成树的图数据库索引算法 总被引:1,自引:0,他引:1
对复杂数据进行图模式建模近几年越来越流行,因此,在查询执行的优化过程中图索引技术变得至关重要.研究了图模式的索引问题,并且提出了一种近似的索引方法,称为MSTA方法.MSTA方法利用最小生成树结构作为索引特征,依据最小生成树边序列的包含关系和基于最大公共子图的图距离度量,将最小生成树组织到一个称为MST树的索引结构中.MST树索引结构可以高效地支持多种查询,例如子图查询.MSTA方法具备高效的索引性能.在索引大小和索引建立时间方面,传统方法是MSTA方法的数十倍,甚至上百倍.MSTA方法虽然不能返回完整结果,但是可以返回经图距离度量排序最好的部分结果. 相似文献
16.
随着社交网络用户数的快速增加,大规模单图上频繁子图挖掘的需求越来越强烈.单机算法对大规模图的运行效率较低,难以支撑支持度较低的频繁子图的挖掘;现有的分布式环境下单图的频繁子图挖掘算法不支持子图增长模式的挖掘,它们所使用的Hadoop框架也不适合运行迭代式算法.提出了一种基于Spark的大规模单图频繁子图挖掘算法FSMBUS,通过次优树构建并行计算的候选子图,在给定最小支持度时挖掘出所有的频繁子图,并利用非频繁检测和搜索顺序选择实现优化,还设计了一种名为Sorted-Greedy的轻量级数据划分方法.实验结果表明,FSMBUS的效率要比现有单图上最新的算法快一个数量级,并支持更低最小支持度阈值以及更大规模图数据的挖掘,同时FSMBUS比其Hadoop的移植版要快2~4倍. 相似文献